Skip to main content
Log in

An Optimal Recovery Condition for Sparse Signals with Partial Support Information via OMP

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the orthogonal matching pursuit (OMP) algorithm for sparse recovery in both noiseless and noisy cases when the partial prior information is available. The prior information is included in an estimated subset of the support of the sparse signal. First, we show that if \(\varvec{A}\) satisfies \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\), then the OMP algorithm can perfectly recover any k-sparse signal \(\varvec{x}\) from \(\varvec{y}=\varvec{Ax}\) in \(k-g\) iterations when the prior support of \(\varvec{x}\) includes g true indices and b wrong indices. Furthermore, we show that the condition \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\) is optimal. Second, we achieve the exact recovery of the remainder support (i.e., it is composed of indices in the true support of \(\varvec{x}\) but not in the prior support) from \(\varvec{y}=\varvec{Ax}+\varvec{v}\) under appropriate conditions. On the other hand, for the remainder support recovery, we also obtain a necessary condition based on the minimum magnitude of nonzero elements in the remainder support of \(\varvec{x}\). Compared to the OMP algorithm, numerical experiments demonstrate that the OMP algorithm with the partial prior information has better recovery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.S. Bandeira, K. Scheinberg, L.N. Vicente, On partially sparse recovery, Technical Report, Department of Mathematics, University of Coimbra (2011)

  2. R. Baraniuk, P. Steeghs, Compressive radar imaging, in Proceedings of the IEEE Radar Conference, pp. 128–133 (2007)

  3. R.F.V. Borries, C.J. Miosso, C. Potes, Compressed sensing using prior information, in 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMPSAP 2007, IEEE, pp. 121–124

  4. T. Cai, A. Zhang, Spares representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60(1), 122–132 (2014)

    Article  MATH  Google Scholar 

  5. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Chen, Y. Li, G. Wu, Recovery of signals under the high order RIP condition via prior support information. Signal Process. 153, 83–94 (2018)

    Article  Google Scholar 

  7. W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.A. Davenport, J.N. Laska, J.R. Treichler, R.G. Baraniuk, The pros and cons of compressive sensing for wideband signal acquisition: noise folding versus dynamic range. IEEE Trans. Signal Process. 60(9), 4628–4642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, Basel, 2013)

    Book  MATH  Google Scholar 

  10. M.P. Friedlander, H. Mansour, R. Saab, O. Yilmaz, Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ge, W. Chen, Recovery of signals by a weighted $\ell _2/\ell _1$ minimization under arbitrary prior support information. Signal process. 148, 288–302 (2018)

    Article  Google Scholar 

  12. M.A. Herman, T. Strohmer, High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Herzet, C. Soussen, J. Idier, R. Gribonval, Exact recovery conditions for sparse representations with partial support information. IEEE Trans. Inf. Theory 59(11), 7509–7524 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Jacques, A short note on compressed sensing with partially known signal support. Signal Process. 90(12), 3308–3312 (2010)

    Article  MATH  Google Scholar 

  15. N.B. Karahanoglu, H. Erdogan, On the theoretical analysis of orthogonal matching pursuit with termination based on the residue. Exp. Brain Res. 187(1), 71–84 (2012)

    Google Scholar 

  16. N.B. Karahanoglu, H. Erdogan, Online recovery guarantees and analytical results for OMP. arXiv:1210.5991v2 (2013)

  17. M.A. Khajehnejad, W. Xu, A.S. Avestimehr, B. Hassibi, Weighted $\ell _1$ minimization for sparse recovery with prior information, in IEEE International Symposium on Information Theory (ISIT) 2009, IEEE, pp. 483–487, June 2009

  18. B. Li, Y. Shen, Z. Wu, J. Li, Sufficient conditions for generalized orthogonal matching pursuit in noisy case. Signal Process. 143, 111–123 (2015)

    Article  Google Scholar 

  19. H. Liu, J. Peng, Sparse signal recovery via alternating projection method. Signal Process. 143, 161–170 (2018)

    Article  Google Scholar 

  20. H. Liu, Y. Ma, Y. Fu, An improved RIP-based performance guarantee for sparse signal recovery via simultaneous orthogonal matching pursuit. Signal Process. 144, 29–35 (2018)

    Article  Google Scholar 

  21. W. Lu, N. Vaswani, Exact reconstruction conditions and error bounds for regularized modified basis pursuit, in Proceedings of the Asilomar Conference on Signals, Systems and Computers (2010)

  22. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  23. Q. Mo, A sharp restricted isometry constant bound of orthogonal matching pursuit. arXiv:1501.01708 v1[cs.IT] (2015)

  24. L.B. Montefusco, D. Lazzaro, S. Papi, A fast algorithm for nonconvex approaches to sparse recovery problems. Signal Process. 93, 2636–2647 (2013)

    Article  Google Scholar 

  25. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Needell, R. Saab, T. Woolf, Weighted $\ell _1$-minimization for sparse recovery under arbitrary prior information. Inf. Inference J. IMA 6, 284C309 (2017)

    MATH  Google Scholar 

  27. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, Beyond Nyquist: efficient sampling of sparse, bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Vaswani, W. Lu, Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process. 58(9), 4595–4607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Wen, J. Wang, Q. Zhang, Nearly optimal bounds for orthogonal least squares. IEEE Trans. Signal Process. 65(20), 5347–5356 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Wen, Z. Zhou, J. Wang, X. Tang, Q. Mo, A sharp condition for exact support recovery of sparse signals with orthogonal matching pursuit. IEEE Trans. Signal Process. 65, 1370–1382 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Zhang, S. Li, A proof of conjecture on restricted isometry property constants $\delta _{tk}$ ($0<t<\frac{4}{3}$). IEEE Trans. Inf. Theory 64(3), 1699–1705 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their valuable suggestion and comments that greatly improve the presentation of this paper. The authors are also thankful to Qun Mo for his meaningful discussion about Remark 3. This work was supported by the NSF of China (Nos. 11871109, 61471343), the National Key Research and Development Program of China (No. 2018YFC2000605), NSAF(Grant No. U1830107) and the Science Challenge Project (Grant TZ2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Proof of Lemma 1

Proof

For simplicity, let

$$\begin{aligned} \alpha _1^{(t)}=\max _{i\in T{\setminus } \Lambda _t}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| =\left\| \varvec{A}_{T{\setminus }\Lambda _t}^{\top }\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\| _\infty \end{aligned}$$
(13)

and

$$\begin{aligned} \beta _1^{(t)}=\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| =\left| \left\langle \varvec{Ae}_{i_t}, \varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| \end{aligned}$$
(14)

where \(i_t=\arg \max \nolimits _{i\in (T\cup \Lambda _t)^c}|\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\rangle |\). By \(|T\cap T_0|=g\), \(|T|=k\), \(\Lambda _t\subseteq (T\cup T_0)\), \(T_0\subseteq \Lambda _t\) and \(|\Lambda _t|=t\), it is clear that the fact \(|T\backslash \Lambda _t|=k-g-t\) holds. Then by (13), one obtains that

$$\begin{aligned}&\sqrt{k-g-t}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\alpha _1^{(t)}\nonumber \\&\quad =\sqrt{k-g-t}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\left\| \varvec{A}_{T {\setminus } \Lambda _t}^{\top }\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\| _\infty \nonumber \\&\quad {\mathop {\ge }\limits ^{(a)}}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\left\| \varvec{A}_{T {\setminus } \Lambda _t}^{\top }\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\| _2\nonumber \\&\quad {\mathop {=}\limits ^{(b)}}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\left\| \varvec{A}_{T\cup \Lambda _t}^{\top }\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\| _2\nonumber \\&\quad {\mathop {\ge }\limits ^{(c)}} \left\langle \varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _k}, \varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t} \right\rangle \nonumber \\&\quad =\left\langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t} \right\rangle \end{aligned}$$
(15)

where (a) and (c), respectively, follow from \(|T\backslash \Lambda _t|=k-g-t\) and the Hölder inequality, and (b) is due to the fact that \(\varvec{A}_{\Lambda _t}^{\top }\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}=\varvec{0}\).

Let \(s=-\frac{\sqrt{k-g-t+1}-1}{\sqrt{k-g-t}}\) and

$$\begin{aligned} {\hat{s}}_{i_t}=\left\{ \begin{array}{ll} +\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2s, &{} \langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}, \varvec{Ae}_{i_t}\rangle \ge 0, \\ -\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2s, &{} \langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t},\varvec{Ae}_{i_t}\rangle <0, \end{array} \right. \end{aligned}$$

then \({\hat{s}}_{i_t}^2=\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2^2s^2\) and

$$\begin{aligned} s^2=\frac{\sqrt{k-g-t+1}-1}{\sqrt{k-g-t+1}+1}<1. \end{aligned}$$

Further, by (15), (14), \(s^2<1\) and some simple calculations, we derive that

$$\begin{aligned}&\left( 1-s^4\right) \sqrt{k-g-t}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\left( \alpha _1^{(t)}-\beta _1^{(t)}\right) \nonumber \\&\quad \ge \left( 1-s^4\right) \left( \left\langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t} \right\rangle -\sqrt{k-g-t}\left\| \varvec{z}_{T\cup \Lambda _t}\right\| _2\left| \left\langle \varvec{Ae}_{i_t},\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| \right) \nonumber \\&\quad =\left\| \varvec{A}\left( \tilde{\varvec{z}}_{T\cup \Lambda _t}+{\hat{s}}_{i_t}\varvec{e}_{i_t}\right) \right\| _2^2-\left\| \varvec{A}\left( s^2\tilde{\varvec{z}}_{T\cup \Lambda _t}-{\hat{s}}_{i_t}\varvec{e}_{i_t}\right) \right\| _2^2, \end{aligned}$$
(16)

where the last equality is from the definitions of s and \({\hat{s}}_{i_t}\) and

$$\begin{aligned} \frac{2{\hat{s}}_{i_t}}{1-s^2} =\left\{ \begin{array}{ll} -\sqrt{k-g-t}\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2,&{}\langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}, \varvec{Ae}_{i_t}\rangle \ge 0; \\ \sqrt{k-g-t}\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2,&{}\langle \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}, \varvec{Ae}_{i_t}\rangle <0. \end{array} \right. \end{aligned}$$

Because \(0\le t< k-g\), \(\varvec{A}\) satisfies the RIP of order \(k+b+1\) with \(\delta _{k+b+1}\), \(|T\cup \Lambda _t|=k+b\) and \(i_t\in (T\cup \Lambda _t)^c\), one obtains that

$$\begin{aligned}&\left\| \varvec{A}\left( \tilde{\varvec{z}}_{T\cup \Lambda _t}+{\hat{s}}_{i_t}\varvec{e}_{i_t}\right) \right\| _2^2-\left\| \varvec{A}\left( s^2\tilde{\varvec{z}}_{T\cup \Lambda _t}-{\hat{s}}_{i_t}\varvec{e}_{i_t}\right) \right\| _2^2\nonumber \\&\quad \ge \left( 1-\delta _{k+b+1}\right) \left( \left\| \tilde{\varvec{z}}_{T\cup \Lambda _t}+{\hat{s}}_{i_t}\varvec{e}_{i_t}\right\| _2^2\right) -\left( 1+\delta _{k+b+1}\right) \left( \left\| s^2\tilde{\varvec{z}}_{T\cup \Lambda _t}-{\hat{s}}_{i_t}\varvec{e}_{i_t}\right\| _2^2\right) \nonumber \\&\quad =\left\| \tilde{\varvec{z}}_{T\cup \Lambda _t}\right\| _2^2\left( 1+s^2\right) ^2\bigg (\frac{1-s^2}{1+s^2}-\delta _{k+b+1}\bigg ), \end{aligned}$$
(17)

where the equality is from \(i_t\in (T\cup \Lambda _t)^c\), \(\Vert \varvec{e}_{i_t}\Vert _2=1\) and the fact \({\hat{s}}_{i_t}^2=\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2^2s^2.\) Combining with (16), we have that

$$\begin{aligned} \alpha _1^{(t)}-\beta _1^{(t)} \ge&\frac{\left( 1+s^2\right) ^2\bigg (\frac{1-s^2}{1+s^2}-\delta _{k+b+1}\bigg )}{\left( 1-s^4\right) \sqrt{k-g-t}}\Vert \tilde{\varvec{z}}_{T\cup \Lambda _t}\Vert _2\\ =&\bigg (1-\sqrt{k-g-t+1}\delta _{k+b+1}\bigg )\frac{\Vert \tilde{\varvec{z}}_{T\cup \Lambda _t}\Vert _2}{\sqrt{k-g-t}}, \end{aligned}$$

where the equality is due to the definition of s meaning the fact that

$$\begin{aligned} \frac{1-s^2}{1+s^2}=\frac{1-\frac{\sqrt{k-g-t+1}-1}{\sqrt{k-g-t+1}+1}}{1+\frac{\sqrt{k-g-t+1}-1}{\sqrt{k-g-t+1}+1}}=\frac{1}{\sqrt{k-g-t+1}}. \end{aligned}$$

\(\square \)

Appendix B: The Proof of Theorem 1

Proof

By the inductive method, we first prove that under the condition (4), i.e., \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\), the \(\mathrm {OMP}_{T_0}\) algorithm succeeds in the sense of Definition 2.

For the first iteration, \(\Lambda _0=T_0\) and \(\varvec{r}^{(0)}=\varvec{A}_{T\cup T_0}\varvec{z}_{T\cup T_0}\). By Lemma 1 with \(t=0\) and (4), i.e., \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\), we have that

$$\begin{aligned}&\max _{i\in T{\setminus } T_0}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup T_0}\varvec{z}_{T\cup T_0}\right\rangle \right| -\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup T_0}\varvec{z}_{T\cup T_0}\right\rangle \right| \\&\quad \ge \left( 1-\sqrt{k-g+1}\delta _{k+b+1}\right) \frac{\Vert \tilde{\varvec{z}}_{T\cup T_0}\Vert _2}{\sqrt{k-g}}>0. \end{aligned}$$

That is,

$$\begin{aligned} \max \limits _{i\in T{\setminus } T_0}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(0)}\right\rangle \right| >\max \limits _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i,\varvec{r}^{(0)}\right\rangle \right| . \end{aligned}$$

Then the \(\mathrm {OMP}_{T_0}\) algorithm selects a correct index in the first iteration, i.e., \(j_1\in T{\setminus } T_0\).

Suppose that the \(\mathrm {OMP}_{T_0}\) algorithm has performed t (\(1\le t <k-g\)) iterations successfully, that is, \(\Lambda _{t}{\setminus } T_0 \subseteq T{\setminus } T_0\). For the \((t+1)\)th iteration, by the equality (7) with \(\varvec{v}=\varvec{0}\), one has that

$$\begin{aligned}&\max _{i\in T{\setminus } \Lambda _t}\left| \left\langle \varvec{Ae}_i,\varvec{r}^{(t)}\right\rangle \right| -\max _{i\in (T\cup \Lambda _t)^c}\left| \left\langle \varvec{Ae}_i,\varvec{r}^{(t)}\right\rangle \right| \\&\quad =\max _{i\in T{\setminus } \Lambda _t}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| -\max _{i\in (T\cup \Lambda _t)^c}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| \\&\quad \overset{(a)}{\ge }\frac{1}{\sqrt{k-g-t}}\bigg (1-\sqrt{k-g-t+1}\delta _{k+b+1}\bigg )\\&\quad \ge \frac{1}{\sqrt{k-g}}\bigg (1-\sqrt{k-g+1}\delta _{k+b+1}\bigg )\overset{(b)}{>}0, \end{aligned}$$

where (a) and (b) follow from Lemma 1 and (4), respectively. Then the \(\mathrm {OMP}_{T_0}\) algorithm makes a success in the \((t+1)\)th iteration, i.e., \(j_{t+1}\in T{\setminus }\Lambda _t\subseteq T{\setminus } T_0\). Therefore, if \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\), then the \(\mathrm {OMP}_{T_0}\) algorithm succeeds by Definition 2.

It remains to prove \(\varvec{x}=\hat{\varvec{x}}\), where \(\varvec{{\hat{x}}}\) is the output by the \(\mathrm {OMP}_{T_0}\) algorithm after \(k-g\) successful iterations. As the \(\mathrm {OMP}_{T_0}\) algorithm has performed \(k-g\) iterations successfully, which implies the fact \(\Lambda _{k-g}=T\cup T_0\), one has that

$$\begin{aligned} \hat{\varvec{x}}_{\Lambda _{k-g}}&=\varvec{x}^{(k-g)}=\varvec{A}^{\dagger }_{\Lambda _{k-g}}\varvec{y}\\&{\mathop {=}\limits ^{(a)}}\left( \varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_{\Lambda _{k-g}}\right) ^{-1}\varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_T\varvec{x}_T\\&=\left( \varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_{\Lambda _{k-g}}\right) ^{-1}\varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_{\Lambda _{k-g}}\varvec{x}_{\Lambda _{k-g}}\\&\quad -\left( \varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_{\Lambda _{k-g}}\right) ^{-1}\varvec{A}^{\top }_{\Lambda _{k-g}}\varvec{A}_{\Lambda _{k-g}{\setminus } T}\varvec{x}_{\Lambda _{k-g}{\setminus } T}\\&{\mathop {=}\limits ^{(b)}}\varvec{x}_{\Lambda _{k-g}} \end{aligned}$$

where (a) and (b), respectively, follow from the fact that \(\varvec{A}\) satisfies the RIP of order \(k+b+1\), which means that \(\varvec{A}_{\Lambda _{k-g}}\) is full column rank, and \(\Lambda _{k-g}=T\cup T_0\). We have completed the proof of the theorem. \(\square \)

Appendix C: The Proof of Theorem 2

Proof

For given integers \(k>0\), \(b\ge 0\) and \(0 \le g<k\), let \(\varvec{A}_1\in {\mathbb {R}}^{(k+b+1)\times (k+b+1)}\) be

$$\begin{aligned} \varvec{A}_1= \begin{bmatrix}&&0&\cdots&0&\beta \\&\sqrt{\frac{k-g}{k-g+1}}\varvec{I}_{k-g}&\vdots&\vdots&\vdots \\&&0&\cdots&0&\beta \\ 0&\cdots&0&\\ \vdots&\vdots&&\varvec{I}_{g+b+1}&\\ 0&\cdots&0&&\\ \end{bmatrix}, \end{aligned}$$
(18)

where \(\beta =\frac{1}{\sqrt{(k-g+1)(k-g)}}\). Then

$$\begin{aligned} \varvec{A}_1^{\top }\varvec{A}_1= \begin{bmatrix}&&0&\cdots&0&\gamma \\&\frac{k-g}{k-g+1}\varvec{I}_{k-g}&\vdots&\vdots&\vdots \\&&0&\cdots&0&\gamma \\ 0&\cdots&0&&0\\ \vdots&\vdots&\varvec{I}_{g+b}&\vdots \\ 0&\cdots&0&&0 \\ \gamma&\cdots&\gamma&0&\cdots&0&1+\gamma \\ \end{bmatrix}, \end{aligned}$$

where \(\gamma =(k-g)\beta ^2=\frac{1}{k-g+1}\). By elementary transformation of determinant, one can verify that

$$\begin{aligned} \begin{vmatrix} \varvec{A}_1^{\top }\varvec{A}_1-\lambda \varvec{I}_{k+b+1} \end{vmatrix}&= \begin{vmatrix}&&0&\cdots&0&\lambda \\&(\frac{k-g}{k-g+1}-\lambda )\varvec{I}_{k-g}&\vdots&\vdots&0\\&&0&\cdots&0&\vdots \\ 0&\cdots&0&&\vdots \\ \vdots&\vdots&\mu \varvec{I}_{g+b}&\vdots \\ 0&\cdots&0&&0 \\ (k-g)\gamma&\cdots&\gamma&0&\cdots&0&\mu +\gamma \\ \end{vmatrix}\\&=(-1)^{1+1}\left( \frac{k-g}{k-g+1}-\lambda \right) ^{k-g}\mu ^{g+b}\left( \mu +\gamma \right) \\&\ \ +(-1)^{2(k+b+1)+1}\frac{k-g}{k-g+1}\gamma \left( \frac{k-g}{k-g+1}-\lambda \right) ^{k-g-1}\mu ^{g+b}\\&=(1-\lambda )^{g+b}\left( \frac{k-g}{k-g+1}-\lambda \right) ^{k-g-1}\left( \lambda ^2{-}2\lambda +\frac{k{-}g}{k{-}g{+}1}\right) , \end{aligned}$$

where \(\mu =1-\lambda \). Then the eigenvalues \(\{\lambda _i(\varvec{A}_1^{\top }\varvec{A}_1)\}_{i=1}^{k+b+1}\) of \(\varvec{A}_1^{\top }\varvec{A}_1\) are

$$\begin{aligned}&\displaystyle \lambda _1\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =\cdots =\lambda _{k-g-1}\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =\frac{k-g}{k-g+1},\\&\displaystyle \lambda _{k-g}\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =\cdots =\lambda _{k+b-1}\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =1, \lambda _{k+b}\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =1-\frac{1}{\sqrt{k-g+1}},\\&\displaystyle \lambda _{k+b+1}\left( \varvec{A}_1^{\top }\varvec{A}_1\right) =1+\frac{1}{\sqrt{k-g+1}}. \end{aligned}$$

Now, taking the matrix

$$\begin{aligned} \varvec{A}=\begin{pmatrix} \varvec{A}_1 &{} \varvec{0} \\ \varvec{0} &{} \varvec{A}_2 \\ \end{pmatrix}\in {\mathbb {R}}^{m\times n} \end{aligned}$$
(19)

where \(\varvec{A}_2\in {\mathbb {R}}^{(m-k-b-1)\times (n-k-b-1)}\) satisfies \(1-\frac{1}{\sqrt{k-g+1}}\le \lambda ((\varvec{A}^{\top }\varvec{A})_{|S_1|\times |S_2|}) \le 1+\frac{1}{\sqrt{k-g+1}}\) with \(S_1\subseteq [m]\), \(S_2\subseteq [n]\) and \(|S_1|=|S_2|=k+b+1\).

Moreover, by definition of the RIP and [7, Remark 1], the matrix \(\varvec{A}\) satisfies the RIP with

$$\begin{aligned} \delta _{k+b+1}=&\max \left\{ 1-\lambda _{\min }\left( \left( \varvec{A}^{\top }\varvec{A}\right) _{|S_1|\times |S_2|}\right) , \lambda _{\max }\left( \left( \varvec{A}^{\top }\varvec{A}\right) _{|S_1|\times |S_2|}\right) -1\right\} \\ =&\max \left\{ 1-\lambda _{\min }\left( \varvec{A}_1^{\top }\varvec{A}_1\right) , \lambda _{\max }\left( \varvec{A}_1^{\top }\varvec{A}_1\right) -1\right\} \\ =&\frac{1}{\sqrt{k-g+1}}. \end{aligned}$$

Let k-sparse signal

$$\begin{aligned} \bar{\varvec{x}}=(\underbrace{1,\ldots ,1,}_{k}0,\ldots ,0)^{\top }\in {\mathbb {R}}^{n} \end{aligned}$$

and the prior support

$$\begin{aligned} T_0=\{k-g+1,\ldots ,k,k+1,\ldots ,k+b\}, \end{aligned}$$

then

$$\begin{aligned} T=supp(\bar{\varvec{x}})=\{1,\ldots ,k\},\ \ T{\setminus } T_0=\{1,\ldots , k-g\}. \end{aligned}$$

For the first iteration, from (7) with \(t=0\) and \(\varvec{y}=\varvec{A}\bar{\varvec{x}}\) [\(\varvec{A}\) is defined in (19)] it follows that

$$\begin{aligned} \varvec{r}^{(0)}&=\varvec{A}_{T{\setminus } T_0}\bar{\varvec{x}}_{T{\setminus } T_0} -\varvec{A}_{T_0}\varvec{A}_{T{\setminus } T_0}^{\dagger }\varvec{A}_{T{\setminus } T_0}\bar{\varvec{x}}_{T{\setminus } T_0}\\&=\left( \underbrace{\sqrt{\frac{k-g}{k-g+1}},\ldots ,\sqrt{\frac{k-g}{k-g+1}}}_{k-g},0,\ldots ,0\right) ^{\top }, \end{aligned}$$

where the last equality is from (19) and the fact

$$\begin{aligned} \varvec{A}_{T{\setminus } T_0}\bar{\varvec{x}}_{T{\setminus } T_0} =\left( \underbrace{\sqrt{\frac{k-g}{k-g+1}},\ldots ,\sqrt{\frac{k-g}{k-g+1}}}_{k-g},0,\ldots ,0\right) ^{\top }, \end{aligned}$$

and \(\varvec{A}_{T_0}^{\top }\varvec{A}_{T{\setminus } T_0}\bar{\varvec{x}}_{T{\setminus } T_0}=\varvec{0}\).

On the other hand, for \(i\in T{\setminus } T_0\), one has

$$\begin{aligned} \left| \left\langle \varvec{Ae}_i, \varvec{r}^{(0)}\right\rangle \right| =\frac{k-g}{k-g+1}. \end{aligned}$$

And for \(i\in (T\cup T_0)^c=\{k+b+1\}\), it follows immediately that

$$\begin{aligned} \left| \left\langle \varvec{Ae}_i, \varvec{r}^{(0)}\right\rangle \right| =\frac{k-g}{k-g+1}. \end{aligned}$$

Clearly,

$$\begin{aligned} \max \limits _{i\in T{\setminus } T_0}\left\langle \varvec{Ae}_i,\varvec{r}^{(0)}\right\rangle =\max \limits _{i\in (T\cup T_0)^c}\left\langle \varvec{Ae}_i,\varvec{r}^{(0)}\right\rangle , \end{aligned}$$

which implies the \(\mathrm {OMP}_{T_0}\) algorithm may fail to identify one index of the subset \(T{\setminus } T_0\) in the first iteration. So the \(\mathrm {OMP}_{T_0}\) algorithm may fail for the given matrix \(\varvec{A}\) in (19), the k-sparse signal \(\bar{\varvec{x}}\) and the prior support \(T_0\). \(\square \)

Appendix D: The Proof of Theorem 3

Proof

The proof consists of two parts. In the first part, we show that the \(\mathrm {OMP}_{T_0}\) algorithm selects indices from the remainder support \(T{\setminus } T_0\) in each iteration under the conditions (4) and (5). In the second part, we prove that the \(\mathrm {OMP}_{T_0}\) algorithm exactly performs \(|T{\setminus } T_0|=k-g\) iterations under the stopping rule \(\Vert \varvec{r}^{(t)}\Vert _2\le \varepsilon \).

Part I: By induction method, suppose first that the \(\mathrm {OMP}_{T_0}\) algorithm performed t (\(1 \le t < k-g\)) iterations successfully, that is, \(\Lambda _t\subseteq T\cup T_0\) and \(j_1,\ldots , j_t \in T{\setminus } T_0\). Then by the \(\mathrm {OMP}_{T_0}\) algorithm in Table 1, we need to show \(j_{t+1} \in T{\setminus } \Lambda _t\) which means the \(\mathrm {OMP}_{T_0}\) algorithm makes a success in the \((t+1)\)th iteration. By the fact that \(\varvec{r}^{(t)}\) is orthogonal to each column of \(\varvec{A}_{\Lambda _t}\), we only need to prove that

$$\begin{aligned} \max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(t)}\right\rangle \right| >\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(t)}\right\rangle \right| \end{aligned}$$
(20)

for the \((t+1)\)th iteration.

From (7), one has that

$$\begin{aligned} \max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(t)}\right\rangle \right|&=\max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}+\varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| \nonumber \\&\ge \max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}\right\rangle \right| -\max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| \end{aligned}$$
(21)

and

$$\begin{aligned} \max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(t)}\right\rangle \right| =&\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}+\varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| \nonumber \\ \le&\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}\right\rangle \right| +\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| . \end{aligned}$$
(22)

Therefore, to show (20), by (21) and (22), it suffices to prove that

$$\begin{aligned}&\max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}\right\rangle \right| -\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{A}\tilde{\varvec{z}}_{T\cup \Lambda _t}\right\rangle \right| \nonumber \\&>\max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| +\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| . \end{aligned}$$
(23)

One first gives a lower bound on the left-hand side of (23). From Lemma 1, it follows that

$$\begin{aligned}&\max _{i\in T{\setminus } \Lambda _t}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| -\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i,\varvec{A}_{T\cup \Lambda _t}\varvec{z}_{T\cup \Lambda _t}\right\rangle \right| \nonumber \\&\quad \ge \left( 1-\sqrt{k-g-t+1}\delta _{k+b+1}\right) \frac{\Vert \tilde{\varvec{z}}_{T\cup \Lambda _t}\Vert _2}{\sqrt{k-g-t}}\nonumber \\&\quad \ge \left( 1-\sqrt{k-g-t+1}\delta _{k+b+1}\right) \frac{\Vert \varvec{x}_{T{\setminus }\Lambda _t}\Vert _2}{\sqrt{k-g-t}}\nonumber \\&\quad \ge \left( 1-\sqrt{k-g+1}\delta _{k+b+1}\right) \min _{i\in T{\setminus } T_0}|x_i|, \end{aligned}$$
(24)

where the second inequality is due to the definition of \(\varvec{z}_{T\cup T_0}\) in (8) and the last inequality is from \(0\le t<k-g\) and the induction assumption \(j_1,\ldots ,j_t\in T{\setminus } T_0\) (i.e., \(|T{\setminus }\Lambda _t|=k-g-t\)) implying

$$\begin{aligned} \Vert \varvec{x}_{T{\setminus }\Lambda _t}\Vert _2\ge \sqrt{k-g-t+1}\min _{i\in T{\setminus } T_0}|x_i|. \end{aligned}$$

One now gives an upper bound on the right-hand side of (23). There exist the indices \(i^{(t)}\in T{\setminus } \Lambda _t\) and \(i_1^{(t)}\in (T\cup T_0)^c\) satisfying

$$\begin{aligned} \max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| =\left| \left\langle \varvec{Ae}_{i^{(t)}}, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| \end{aligned}$$

and

$$\begin{aligned} \max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| =\left| \left\langle \varvec{Ae}_{i_1^{(t)}}, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| , \end{aligned}$$

respectively. Therefore,

$$\begin{aligned}&\max _{i\in T{\setminus }\Lambda _t}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| +\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{Ae}_i, \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\rangle \right| \nonumber \\&\quad =\Vert \varvec{A}_{\{i^{(t)},i_1^{(t)}\}}^{\top } \varvec{P}_{\Lambda _t}^\perp \varvec{v}\Vert _1\nonumber \\&\quad \le \sqrt{2}\Vert \varvec{A}_{\{i^{(t)},i_1^{(t)}\}}^{\top } \varvec{P}_{\Lambda _t}^\perp \varvec{v}\Vert _2\nonumber \\&\quad {\mathop {\le }\limits ^{(a)}}\sqrt{2(1+\delta _{k-g+1})}\Vert \varvec{P}_{\Lambda _t}^\perp \varvec{v}\Vert _2\nonumber \\&\quad {\mathop {\le }\limits ^{(b)}}\sqrt{2(1+\delta _{k-g+1})}\varepsilon \end{aligned}$$
(25)

where (a) follows from \(\varvec{A}\) fulfilling the RIP with order \(k-g+1\) (\(g<k\)) and (b) is because the fact

$$\begin{aligned} \left\| \varvec{P}_{\Lambda _t}^\perp \varvec{v}\right\| _2\le \left\| \varvec{P}_{\Lambda _t}^\perp \right\| _2\left\| \varvec{v}\right\| _2\le \left\| \varvec{v}\right\| _2\le \varepsilon . \end{aligned}$$

By (4) and (5), there is

$$\begin{aligned} \bigg (1-\sqrt{k-g+1}\delta _{k+b+1}\bigg )\min _{i\in T{\setminus } T_0}|x_i| >\sqrt{2(1+\delta _{k-g+1})}\varepsilon . \end{aligned}$$

Combining with (24), (25), it is obvious that (23) holds. Then the \(\mathrm {OMP}_{T_0}\) algorithm selects one index from the subset \(T{\setminus } \Lambda _t\) in the \((t+1)\)th iteration. In conclusion, we have shown that the \(\mathrm {OMP}_{T_0}\) algorithm selects one index from \(T{\setminus } T_0\) in each iteration under the conditions (4) and (5).

Part II: We prove that the \(\mathrm {OMP}_{T_0}\) algorithm performs exactly \(k-g\) iterations. That is, we show that \(\Vert \varvec{r}^{(k-g)}\Vert _2\le \varepsilon \) and \(\Vert \varvec{r}^{(t)}\Vert _2>\varepsilon \) for \(0\le t <k-g\).

Since the \(\mathrm {OMP}_{T_0}\) algorithm selects an index of \(T{\setminus } T_0\) in each iteration under the conditions (4) and (5), \(\Lambda _t\subseteq T\cup T_0\) and \(|\Lambda _t|=k-g+t\) with \(0\le t<k-g\) and \(\Lambda _{k-g}=T\cup T_0\) meaning \(\varvec{P}^{\perp }_{\Lambda _{k-g}}\varvec{A}_T\varvec{x}_T=\varvec{0}\). Moreover,

$$\begin{aligned} \left\| \varvec{r}^{(k-g)}\right\| _2=&\left\| \varvec{P}^{\perp }_{\Lambda _{k-g}}\varvec{A}_T\varvec{x}_T+\varvec{P}^{\perp }_{\Lambda _{k-g}}\varvec{v}\right\| _2 =\left\| \varvec{P}^{\perp }_{\Lambda _{k-g}}\varvec{v}\right\| _2\le \Vert \varvec{v}\Vert _2\le \varepsilon . \end{aligned}$$

For \(0\le t<k-g\), by (7) we have

$$\begin{aligned} \left\| \varvec{r}^{(t)}\right\| _2&=\Vert \varvec{A}_{T\cup \Lambda _{t}}\varvec{z}_{T\cup \Lambda _t}+(\varvec{I}-\varvec{P}_{\Lambda _t})\varvec{v}\Vert _2\\&\ge \Vert \varvec{A}_{T\cup \Lambda _{t}}\varvec{z}_{T\cup \Lambda _t}\Vert _2-\Vert \varvec{P}^{\perp }_{\Lambda _{t}}\varvec{v}\Vert _2\\&{\mathop {\ge }\limits ^{(a)}}\sqrt{1-\delta _{k+b}}\Vert \varvec{z}_{T\cup \Lambda _t}\Vert _2-\varepsilon \\&\ge \sqrt{1-\delta _{k+b+1}}\Vert \varvec{x}_{T{\setminus }\Lambda _t}\Vert _2-\varepsilon \\&\ge \sqrt{1-\delta _{k+b+1}}\sqrt{k-g-t}\min _{T{\setminus }\Lambda _t}|x_i|-\varepsilon \\&\ge \sqrt{1-\delta _{k+b+1}}\min _{T{\setminus } T_0}|x_i|-\varepsilon {\mathop {>}\limits ^{(b)}}\varepsilon \end{aligned}$$

where (a) is because \(\varvec{A}\) satisfies the RIP with order \(k+b+1\), \(|T\cup \Lambda _{t}|=k+b\) and \(\Vert \varvec{P}_{\Lambda _t}^\perp \varvec{e}\Vert _2\le \varepsilon \) and (b) is because of (5). We have completed the proof. \(\square \)

Appendix E: The Proof of Theorem 5

Proof

By (6), the condition (5) holds. Then, from Theorem 3, the conditions (4) (i.e., \(\delta _{k+b+1}<\frac{1}{\sqrt{k-g+1}}\)) and (5) ensure the \(\mathrm {OMP}_{T_0}\) algorithm with the stopping rule \(\Vert \varvec{r}^{(t)}\Vert _2\le \varepsilon \) exactly stops after performing \(k-g\) iterations successfully. Clearly, \(\Lambda _{k-g}=T\cup T_0\). For the \(\mathrm {OMP}_{T_0}\) algorithm in Table 1, by \(\varvec{A}\) satisfying the RIP with order \(k+b+1\) (i.e., \(\varvec{A}_{T\cup T_0}\) is column full rank, which implies \(\varvec{A}^{\dag }_{T\cup T_0}=(\varvec{A}_{T\cup T_0}^{\top }\varvec{A}_{T\cup T_0})^{-1}\)), one has

$$\begin{aligned} \varvec{x}^{(k-g)}&=\arg \min _{\varvec{u}}\Vert \varvec{y}-\varvec{A}_{\Lambda _{k-g}}\varvec{u}\Vert =\varvec{A}^{\dag }_{T\cup T_0}\varvec{y} =\varvec{A}^{\dag }_{T\cup T_0}\left( \varvec{A}_{T\cup T_0}\varvec{x}_{T\cup T_0}+\varvec{v}\right) \nonumber \\&= \varvec{x}_{T\cup T_0}+\varvec{\omega }, \end{aligned}$$
(26)

where

$$\begin{aligned} \varvec{\omega }=\left( \varvec{A}_{T\cup T_0}^{\top }\varvec{A}_{T\cup T_0}\right) ^{-1}\varvec{A}_{T\cup T_0}^{\top }\varvec{v}. \end{aligned}$$
(27)

Furthermore,

$$\begin{aligned} x^{(k-g)}_i=\left\{ \begin{array}{ll} x_i+\omega _i, &{}\quad i\in T, \\ \omega _i, &{}\quad i\in T_0{\setminus } T,\\ 0,&{}\quad i\in (T_0\cup T)^c, \end{array} \right. \end{aligned}$$
(28)

and

$$\begin{aligned} \sqrt{1-\delta _{k+b+1}}\Vert \varvec{\omega }\Vert _2\le&\Vert \varvec{A}_{T\cup T_0}\varvec{\omega }\Vert _2 =\Vert \varvec{P}_{T\cup T_0}\varvec{v}\Vert _2\le \Vert \varvec{v}\Vert \le \varepsilon . \end{aligned}$$
(29)

Then, by (28), one obtains

$$\begin{aligned}&\min _{i\in T\cap T_0}|x^{(k-g)}_i| \ge \min _{i\in T}(|x_i|-|\omega _i|) \overset{(a)}{>}\frac{\varepsilon }{\sqrt{1-\delta _{k+b+1}}}, \\&\max _{i\in T_0{\setminus } T}|x^{(k-g)}_i|=\max _{i\in T_0{\setminus } T}|\omega _i| \le \Vert \varvec{\omega }\Vert _2\overset{(b)}{\le }\frac{\varepsilon }{\sqrt{1-\delta _{k+b+1}}}, \end{aligned}$$

where (a) is from (29) and (5), and (b) follows from (29). In addition, by the definition of RIP, \(\mathrm {supp}(\varvec{x})=T\) and (28) meaning \(\mathrm {supp}(\varvec{x}^{(k-g)})=T\cup T_0\), one has

$$\begin{aligned} \Vert \varvec{x}-\varvec{x}^{(k-g)}\Vert _2&\le \frac{1}{\sqrt{1-\delta _{T\cup T_0}}}\left\| \varvec{A}\left( \varvec{x}-\varvec{x}^{(k-g)}\right) \right\| _2\\&\overset{(a)}{=}\frac{1}{\sqrt{1-\delta _{T\cup T_0}}}\left\| \varvec{A}_{T\cup T_0}\varvec{\omega }\right\| _2\\&\overset{(b)}{\le } \frac{\varepsilon }{\sqrt{1-\delta _{k+b+1}}}, \end{aligned}$$

where (a) is due to (26), and (b) is from (5), (27) and (29). \(\square \)

Appendix F: The Proof of Theorem 4

Proof

The proof below roots in [31]. However, some essential modifications are necessary in order to adapt the results to the sparse signal \(\varvec{x}\) with the prior support \(T_0\). Using proofs by contradiction, we show our result in the theorem. Construct a linear model: \(\varvec{y}=\varvec{Ax}+\varvec{v}\), where \(\varvec{A}\) and \(\varvec{v}\), respectively, satisfy the RIP of order \(k+b+1\) with \(0\le \delta _{k+b+1}(\varvec{A})=\delta _{k+b+1}<1\) and \(\Vert \varvec{v}\Vert _2\le \varepsilon \), and \(\varvec{x}\) is a k-sparse signal with the prior support \(T_0\) and satisfies

$$\begin{aligned} \min _{T{\setminus } T_0}|x_i|\le \theta :=\frac{\sqrt{1-\delta _{k+b+1}}\varepsilon }{1-\sqrt{k-g+1}\delta _{k+b+1}}, \end{aligned}$$
(30)

such that the \(\mathrm {OMP}_{T_0}\) algorithm may fail to exactly recover the remainder support \(T{\setminus } T_0\) of the signal \(\varvec{x}\) within \(k-g\) iterations.

It is well known that there exist the unit vectors \(\varvec{\xi }^{(1)},\varvec{\xi }^{(2)},\ldots ,\varvec{\xi }^{(k-g-1)}\in {\mathbb {R}}^{k-g}\) such that the matrix

$$\begin{aligned} \begin{bmatrix}&\varvec{\xi }^{(1)}&\varvec{\xi }^{(2)}&\cdots&\frac{1}{\sqrt{k-g}}\varvec{1}_{k-g} \\ \end{bmatrix} \end{aligned}$$

is orthogonal, which implies \(\langle \varvec{\xi }^{(i)}, \varvec{\xi }^{(j)}\rangle =0\) and \(\langle \varvec{\xi }^{(i)}, \varvec{1}_{k-g}\rangle =0\) for \(i,j=1,\ldots ,k-g-1\) and \(i\ne j\), where \(\varvec{1}_{k-g}=(1,\ldots ,1)^{\top }\in {\mathbb {R}}^{k-g}\). Let the matrix

$$\begin{aligned} \varvec{U}^{\top }=\begin{bmatrix}&\varvec{\Xi }&\varvec{a}&\varvec{0}_{(k-g)\times (g+b)}&\varvec{a} \\ 0&\cdots&0&0&0 \\ \vdots&\vdots&\vdots&\varvec{I}_{g+b}&\vdots \\ 0&\cdots&0&0&0\\ 0&\cdots&0&\eta \tau&\varvec{0}_{g+b}^{\top }&-\tau \\ \end{bmatrix}, \end{aligned}$$
(31)

where the submatrix \(\varvec{\Xi }=[\varvec{\xi }^{(1)},\varvec{\xi }^{(2)},\ldots ,\varvec{\xi }^{(k-g-1)}]\),

$$\begin{aligned} \eta =\frac{\sqrt{k-g+1}-1}{\sqrt{k-g}},\varvec{a}=\frac{\varvec{1}_{k-g}}{\sqrt{(k-g)(\eta ^2+1)}} \end{aligned}$$

and \(\tau =\frac{1}{\sqrt{\eta ^2+1}}\). Then \(\varvec{U}\) is also an orthogonal matrix.

Let \(\varvec{D}\in {\mathbb {R}}^{(k+b+1)\times (k+b+1)}\) be a diagonal matrix with

$$\begin{aligned} d_{ii}=\left\{ \begin{array}{ll} \sqrt{1-\delta _{k+b+1}}, &{}\quad i=k-g, \\ \sqrt{1+\delta _{k+b+1}}, &{}\quad i\ne k-g, \end{array} \right. \end{aligned}$$
(32)

and \(\varvec{A}=\varvec{DU}\), then \(\varvec{A}^{\top }\varvec{A}=\varvec{U}^{\top }\varvec{D}^2\varvec{U}\). In the following, we show that \(\delta _{k+b+1}(\varvec{A})=\delta _{k+b+1}\). For any \(\varvec{x}\in {\mathbb {R}}^{k+b+1}\), setting \(\hat{\varvec{\nu }}=\varvec{Ux}\), we have that

$$\begin{aligned} \Vert \varvec{Ax}\Vert _2^2&=\langle \varvec{Ax}, \varvec{Ax} \rangle =\varvec{x}^{\top }\varvec{A}^{\top }\varvec{Ax}\\&=(\varvec{Ux})^{\top }\varvec{D}^{\top }\varvec{D}(\varvec{Ux}) =\hat{\varvec{\nu }}^{\top }\varvec{D}^2\hat{\varvec{\nu }}\\&=(1+\delta _{k+b+1})\Vert \hat{\varvec{\nu }}\Vert _2^2-2\delta _{k+b+1}{\hat{\nu }}_{k-g}^2\\&\le (1+\delta _{k+b+1})\Vert \hat{\varvec{\nu }}\Vert _2^2 {\mathop {=}\limits ^{(a)}}(1+\delta _{k+b+1})\Vert \varvec{x}\Vert _2^2 \end{aligned}$$

and

$$\begin{aligned} \Vert \varvec{Ax}\Vert _2^2=&\langle \varvec{Ax}, \varvec{Ax} \rangle =\left( 1-\delta _{k+b+1}\right) \Vert \hat{\varvec{\nu }}\Vert _2^2 +2\delta _{k+b+1}\sum _{1\le i\le k+b+1,\ i\ne k-g}{\hat{\nu }}_i^2\\ \ge&\left( 1-\delta _{k+b+1}\right) \Vert \hat{\varvec{\nu }}\Vert _2^2 {\mathop {=}\limits ^{(b)}}\left( 1-\delta _{k+b+1}\right) \Vert \varvec{x}\Vert _2^2, \end{aligned}$$

where (a) and (b) result of the fact that \(\varvec{U}\) is an orthogonal matrix. Then, based on the definition 1, we have \(\delta _{k+b+1}(\varvec{A})\le \delta _{k+b+1} \). It remains to prove that \(\varvec{A}=\varvec{DU}\) satisfies \(\delta _{k+b+1}(\varvec{A})\ge \delta _{k+b+1}.\) Let the vector

$$\begin{aligned} \hat{\varvec{x}}=\left( \left( \varvec{\xi }^{(1)}\right) ^{\top },0,\ldots ,0\right) ^{\top }\in {\mathbb {R}}^{k+b+1}, \end{aligned}$$

then \(\hat{\varvec{x}}\) is \((k+b+1)\)-sparse and \(\Vert \hat{\varvec{x}}\Vert _2^2=1\). By the definitions of \(\varvec{D}\) and \(\varvec{A}\), we obtain that

$$\begin{aligned} \Vert \varvec{A}\hat{\varvec{x}}\Vert _2^2=&(\varvec{U}\hat{\varvec{x}})^{\top }\varvec{D}^2\varvec{U}\hat{\varvec{x}} =\varvec{e}_1^{\top }\varvec{D}^2\varvec{e}_1 =1+\delta _{k+b+1}=(1+\delta _{k+b+1})\Vert \hat{\varvec{x}}\Vert _2^2. \end{aligned}$$

Then, \(\delta _{k+b+1}(\varvec{A})\ge \delta _{k+b+1}\). In conclusion, \(\delta _{k+b+1}(\varvec{A})=\delta _{k+b+1}\).

Let the original signal

$$\begin{aligned} \varvec{x}=(\overbrace{\theta ,\ldots , \theta ,}^{T{\setminus } T_0}\overbrace{1,\ldots ,1,}^{T_0\cap T}\overbrace{0,\ldots ,0}^{T_0{\setminus } T},0)^{\top }\in {\mathbb {R}}^{k+b+1}, \end{aligned}$$
(33)

where \(\theta \) is defined in (30). Then \(\varvec{x}\) in (33) is k-sparse with the support \(T=\{1,2,\ldots ,k\}\), the prior support \(T_0=\{k-g+1,\ldots ,k+b\}\) and satisfies (30). It is not hard to prove that \(\varvec{A}_{T{\setminus } T_0}=\varvec{DU}_{T{\setminus } T_0}\). Moreover, by some simple calculations we derive that

$$\begin{aligned} \varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}&=\varvec{DU}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}\\&\quad =\varvec{D}\sqrt{\frac{k-g}{\eta ^2+1}}\bigg (\underbrace{0,\ldots ,0}_{k-g-1},\theta ,\underbrace{0,\ldots , 0}_{g+b}, \eta \theta \bigg )^{\top }\\&\quad =\sqrt{\frac{k-g}{\eta ^2+1}}\bigg (\underbrace{0,\ldots , 0}_{k-g-1}, \sqrt{1-\delta _{k+b+1}}\theta , \underbrace{0, \cdots ,0}_{g+b}, \sqrt{1+\delta _{k+b+1}}\eta \theta \bigg )^{\top } \end{aligned}$$

and

$$\begin{aligned} \varvec{A}^{\top }\varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0} =(\underbrace{\mu ,\ldots ,\mu ,}_{k-g}\underbrace{0,\ldots ,0,}_{g+b} -\frac{2\eta }{\eta ^2+1}\sqrt{k-g}\delta _{k+b+1}\theta )^{\top }, \end{aligned}$$
(34)

where \(\mu =\frac{(1-\delta _{k+b+1})+(1+\delta _{k+b+1})\eta ^2}{\eta ^2+1}\theta \). Similarly, let the error vector

$$\begin{aligned} \varvec{v}&=\varvec{D}^{-1}\varvec{U}(\underbrace{0,\ldots ,0}_{k+b},-\sqrt{1-\delta _{k+b+1}}\varepsilon )^{\top }\\&=\varvec{D}^{-1}\sqrt{\frac{1-\delta _{k+b+1}}{\eta ^2+1}}(\underbrace{0, \cdots ,0}_{k-g-1},-\eta \varepsilon ,\underbrace{0,\ldots , 0}_{g+b},\varepsilon )^{\top }\\&=\frac{1}{\sqrt{\eta ^2+1}}\bigg (\underbrace{0,\ldots ,0}_{k-g-1},-\eta \varepsilon , \underbrace{0,\ldots ,0}_{g+b}, \sqrt{\frac{1-\delta _{k+b+1}}{1+\delta _{k+b+1}}}\varepsilon \bigg )^{\top } \end{aligned}$$

then \(\Vert \varvec{v}\Vert _2\le \varepsilon \) and

$$\begin{aligned} \varvec{A}^{\top }\varvec{v}&=\varvec{U}^{\top }\varvec{DD}^{-1}\varvec{U}(\underbrace{0,\ldots ,0}_{k+b}, -\sqrt{1-\delta _{k+b+1}}\varepsilon )^{\top }\nonumber \\&=(\underbrace{0,\ldots ,0}_{k+b}, -\sqrt{1-\delta _{k+b+1}}\varepsilon )^{\top }. \end{aligned}$$
(35)

By (34) and (35), it is clear that

$$\begin{aligned} \varvec{A}_{T_0}^{\top }\varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}=\varvec{0},\ \ \ \ \varvec{A}_{T_0}^{\top }\varvec{v}=\varvec{0}. \end{aligned}$$

Therefore, using (7) and the above equality, we obtain that

$$\begin{aligned} \varvec{r}^{(0)}&=\varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}-\varvec{A}_{T_0}(\varvec{A}_{T_0}^{\top }{\varvec{A}_{T_0}})^{-1}\varvec{A}_{T_0}^{\top }\varvec{v}\\&\quad -\varvec{A}_{T_0}(\varvec{A}_{T_0}^{\top }{\varvec{A}_{T_0}})^{-1}\varvec{A}_{T_0}^{\top }\varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}+\varvec{v}\\&=\varvec{A}_{T{\setminus } T_0}\varvec{x}_{T{\setminus } T_0}+\varvec{v}. \end{aligned}$$

Therefore, we have that

$$\begin{aligned} \langle \varvec{Ae}_i, \varvec{r}^{(0)} \rangle&=\left\{ \begin{array}{ll} \frac{(1-\delta _{k+b+1})+(1+\delta _{k+b+1})\eta ^2}{\eta ^2+1}\theta , \ \ \ \ &{}\quad i\in T{\setminus } T_0 \\ -\frac{2\eta \sqrt{k-g}\delta _{k+b+1}\theta }{\eta ^2+1} -\sqrt{1-\delta _{k+b+1}}\varepsilon , &{}\quad i=k+b+1 \end{array} \right. \\&=\left\{ \begin{array}{ll} (1-\frac{\delta _{k+b+1}}{\sqrt{k-g+1}})\theta ,&{}\quad i\in T{\setminus } T_0 \\ -\frac{(k-g)\delta _{k+b+1}\theta }{\sqrt{k-g+1}}-\sqrt{1-\delta _{k+b+1}}\varepsilon ,&{}\quad i=k+b+1. \end{array} \right. \end{aligned}$$

From (30) and the above inequality, it follows that

$$\begin{aligned} \max _{i\in T{\setminus } T_0}\left| \left\langle \varvec{Ae}_i, \varvec{r}^{(0)} \right\rangle \right| =\max _{i\in (T\cup T_0)^c}\left| \left\langle \varvec{A e}_i, \varvec{r}^{(0)} \right\rangle \right| , \end{aligned}$$

which means the \(\mathrm {OMP}_{T_0}\) algorithm may choose a wrong index \(k+b+1\) in the first iteration. That is, the remainder support \(T{\setminus } T_0\) of the signal \(\varvec{x}\) may not be exactly recovered in \(k-g\) iterations by the \(\mathrm {OMP}_{T_0}\) algorithm. We completed the proof. \(\square \)

Appendix G: The Proof of Theorem 6

Proof

By \(g\ge (1-\frac{1}{c^2})(k+1)\), we derive that

$$\begin{aligned} \frac{c}{\sqrt{k+1}}\le \frac{1}{\sqrt{k-g+1}}. \end{aligned}$$
(36)

Since \(1 \le b\le (c-2)\lceil \frac{k}{2}\rceil \), we have \(k+b+1\le c\lceil \frac{k}{2}\rceil \). Then, \(\delta _{k+b+1}\le \delta _{c\lceil \frac{k}{2}\rceil }\). Therefore, from \(\delta _{cr}<c\cdot \delta _{2r}\) for any positive integers c and r (seeing [25, Corollary 3.4]), the fact \(k+1\ge 2\lceil \frac{k}{2}\rceil \) with \(k\ge 2\), \(\delta _{k+1}<\frac{1}{\sqrt{k+1}}\) and the inequality (36), it follows that

$$\begin{aligned} \delta _{k+b+1}\le \delta _{c\lceil \frac{k}{2}\rceil }<c\delta _{2\lceil \frac{k}{2}\rceil } \le c\delta _{k+1} <\frac{c}{\sqrt{k+1}}\le \frac{1}{\sqrt{k-g+1}}, \end{aligned}$$

which implies the condition \(\delta _{k+b+1}\) in this paper is weaker than the sufficient condition \(\delta _{k+1}<\frac{1}{\sqrt{k+1}}\). We complete the proof of the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Chen, W. An Optimal Recovery Condition for Sparse Signals with Partial Support Information via OMP. Circuits Syst Signal Process 38, 3295–3320 (2019). https://doi.org/10.1007/s00034-018-01022-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-01022-9

Keywords

Navigation