Skip to main content
Log in

Hardware Optimized FPGA Implementations of High-Speed True Random Bit Generators Based on Switching-Type Chaotic Oscillators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

One of the important applications of chaotic oscillators is their employment as sources of entropy for True Random Bit Generators (TRBGs). In this work, we introduce high-speed TRBGs realized on a modular Field Programmable Gate Array (FPGA) hardware platform using two different switching-type chaotic oscillators. While both oscillators are autonomous, one is 3-D and the other is 4-D. This enables us to investigate and compare the advantages/disadvantages of higher dimensional chaotic oscillators on the throughput, hardware requirements and security of the generated bit-streams. For that purpose, two different implementations are described for each TRBG; a throughput-optimized architecture and a resource-optimized architecture that utilizes fewer FPGA blocks. In both cases, high speed is achieved by concatenating all state-space variables of each chaos generator into one variable. Furthermore, a new postprocessing method that enables the generated bit-streams to pass all NIST 800.22 statistical tests is introduced. Experimental results show that the throughput-optimized TRBG architecture, based on the 4-D system, can exceed 1882 Mbit/s. However, the resource-optimized TRBG architecture, based on the 3-D system, is the best in terms of FPGA resources and overall Figure of Merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Abid, Q. Nasir, A.S. Elwakil, Implementation of an encrypted wireless communication system using nested chaotic maps. Int. J. Bifurc. Chaos 20(12), 4087–4096 (2010)

    Article  Google Scholar 

  2. M.S. Azzaz, C. Tanougast, S. Sadoudi, R. Fellah, A. Dandache, A new auto-switched chaotic system and its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1792–1804 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Bahi, X. Fang, C. Guyeux, L. Larger, FPGA design for pseudorandom number generator based on chaotic iteration used in information hiding application. Appl. Math. Inf. Sci. 7(6), 2175–2188 (2013)

    Article  MathSciNet  Google Scholar 

  4. M.L. Barakat, A.S. Mansingka, A.G. Radwan, K.N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)

    Article  Google Scholar 

  5. T. Bonny, S. Henno, Image edge detectors under different noise levels with FPGA implementations. J. Circuits Syst. Comput. https://doi.org/10.1142/S0218126618502092. (in press)

  6. T. Bonny, A.S. Elwakil, FPGA realizations of high speed switching-type chaotic oscillators using compact VHDL codes. J. Nonlinear Dyn. 93(2), 819–833 (2018)

    Article  Google Scholar 

  7. C. Chen, H. Ma, H. Chen, Y. Meng, Q. Ding, FPGA implementation of a UPT chaotic signal generator for image encryption. Pac. Sci. Rev. A Nat. Sci. Eng. 17(3), 97–102 (2015)

    Google Scholar 

  8. S.-L. Chen, T. Hwang, S.-M. Chang, W.-W. Lin, A fast digital chaotic generator for secure communication. Int. J. Bifurc. Chaos (2010). https://doi.org/10.1142/S0218127410028136

  9. K. Cho, T. Miyano, Design and test of pseudorandom number generator using a star network of Lorenz oscillators. Int. J. Bifurc. Chaos 27(12), 1750184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-L. Danger, S. Guilley, P. Hoogvorst, High speed true random number generator based on open loop structures in FPGAs. Microelectron. J. 40(11), 1650–1656 (2009)

    Article  Google Scholar 

  11. L. De Micco, H. A. Larrondo, Methodology for FPGA implementation of a chaos-based AWGN generator, in Field-Programmable Gate Array (FPGA) Technologies for High Performance Instrumentation, IGI Global, pp. 43–58 (2016). https://doi.org/10.4018/978-1-5225-0299-9.ch003

  12. Digilent, Inc, (2016). www.zedboard.org

  13. A.S. Elwakil, Integrator-based circuit-independent chaotic oscillator structure. Chaos 14(2), 364–369 (2004)

    Article  MathSciNet  Google Scholar 

  14. X. Fang, Q. Wang, C. Guyeux, J.M. Bahi, FPGA acceleration of a pseudorandom number generator based on chaotic iterations. J. Inf. Secur. Appl. 19(1), 78–87 (2014)

    Google Scholar 

  15. http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

  16. Inc, X.: 7 Series FPGAs Overview, vol. 1. Xilinx (2014)

  17. H. Istvan, A. Suciu, O. Cret, FPGA based TRNG using automatic calibration, in IEEE International Conference on Intelligent Computer Communication and Processing, pp. 373–376 (2009)

  18. I. Koyuncu, A.T. Ozcerit, The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 58(2), 203–214 (2017)

    Article  Google Scholar 

  19. Q. Liu, P. Li, M. Zhang, Y. Sui, H. Yang, A novel image encryption algorithm based on chaos maps with Markov properties. Commun. Nonlinear Sci. Numer. Simul. 20(2), 506–515 (2015)

    Article  MATH  Google Scholar 

  20. C.-Y. Li, Y.-H. Chen, T.-Y. Chang, L.-Y. Deng, K. To, Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 385–389 (2012)

    Article  Google Scholar 

  21. A.S. Mansingka, M.A. Zidan, M.L. Barakat, A.G. Radwan, K.N. Salama, Fully digital Jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77 Gbits/s. Microelectron. J. 44(9), 744–752 (2013)

    Article  Google Scholar 

  22. M.A. Maleki, A. Ahmadi, S.V. Makki, H. Soleimani, M. Bavandpour, Networked adaptive non-linear oscillators: a digital synthesis and application. Circuits Syst. Signal Process. 34(2), 483–512 (2015)

    Article  MathSciNet  Google Scholar 

  23. S. Ozoguz, A.S. Elwakil, S. Ergun, Cross-coupled chaotic oscillators and application to random bit generation. IEE Circuits Devices Syst. 153(10), 506–510 (2006)

    Article  Google Scholar 

  24. S. Ozoguz, A.S. Elwakil, M.P. Kennedy, Experimental verification of the butterfly attractor in a modified Lorenz system. Int. J. Bifurc. Chaos 12(7), 1627–1632 (2002)

    Article  Google Scholar 

  25. M. Park, J.C. Rodgers, D.P. Lathrop, True random number generation using CMOS Boolean chaotic. Microelectron. J. 46(12), 1364–1370 (2015)

    Article  Google Scholar 

  26. F. Pareschi, R. Rovatti, G. Setti, On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur. 7(2), 491–505 (2012)

    Article  Google Scholar 

  27. M. Qiu, S. Yu, Y. Wen, J. Lu, J. He, Z. Lin, Design and FPGA implementation of a universal chaotic signal generator based on the Verilog HDL fixed-point algorithm and state machine control. Int. J. Bifurc. Chaos 27(3), 1750040–1750055 (2017)

    Article  MATH  Google Scholar 

  28. V. Rashtchi, M. Nourazar, FPGA implementation of a real-time weak signal detector using a Duffing oscillator. Circuits Syst. Signal Process. 34(10), 3101–3119 (2015)

    Article  Google Scholar 

  29. J. Sprott, Chaos and Time-Series Analysis (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  30. E. Tlelo-Cuautle, A. Quintas-Valles, L. de la Fraga, J. Rangel-Magdaleno, VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE 11(12), e0168300 (2016)

    Article  Google Scholar 

  31. E. Tlelo-Cuautle, J.J. Rangel-Magdaleno, A.D. Pano-Azucena, P.J. Obeso-Rodelo, J.C. Nunez-Perez, FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(13), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Elwakil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonny, T., Al Debsi, R., Majzoub, S. et al. Hardware Optimized FPGA Implementations of High-Speed True Random Bit Generators Based on Switching-Type Chaotic Oscillators. Circuits Syst Signal Process 38, 1342–1359 (2019). https://doi.org/10.1007/s00034-018-0905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0905-6

Keywords

Navigation