Skip to main content
Log in

Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we demonstrate the possibility of performing two-dimensional rotation on a chaotic system. This enables the rotation of its attractor in space without changing its chaotic dynamics. In particular, the rotated system preserves the same eigenvalues at all equilibrium points and its largest Lyapunov exponent remains unchanged. Two chaotic systems, one of which is the classical Lorenz system, are used to illustrate and validate the rotation operation using numerical simulations and further experimentally using a digital FPGA platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  2. M.L. Barakat, A.S. Mansingka, A.G. Radwan, K.N. Salama, Generalized hardware post-processing technique for chaos-based pseudorandom number generators. ETRI J. 35(3), 448–458 (2013)

    Article  Google Scholar 

  3. T. Bonny, A.S. Elwakil, FPGA realizations of high speed switching-type chaotic oscillators using compact VHDL codes. Nonlinear Dyn. 93(2), 819–833 (2018)

    Article  Google Scholar 

  4. V.H. Carbajal-Gomez, E. Tlelo-Cuautle, J.M. Muñoz-Pacheco, L.G. de la Fraga, C. Sanchez-Lopez, F.V. Fernandez-Fernandez, Optimization and CMOS design of chaotic oscillators robust to PVT variations: INVITED. Integration (2018). https://doi.org/10.1016/j.vlsi.2018.10.010

  5. V. Carbajal-Gomez, E. Tlelo-Cuautle, C. Sanchez-Lopez, F. Fernandez-Fernandez, PVT-robust CMOS programmable chaotic oscillator: synchronization of two 7-scroll attractors. Electronics 7(10), 252 (2018a)

    Article  Google Scholar 

  6. A.S. Elwakil, M.P. Kennedy, Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst.-I 48(3), 289–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.S. Elwakil, S. Özoguz, A system and circuit for generating “multi-butterflies”. Int. J. Bifurc. Chaos 18(03), 841–844 (2008)

    Article  Google Scholar 

  8. A.S. Elwakil, S. Ozoguz, M.P. Kennedy, Creation of a complex butterfly attractor using a novel Lorenz-type system. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 49(4), 527–530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. D.A. Hsieh, Chaos and nonlinear dynamics: application to financial markets. J. Finance 46(5), 1839–1877 (1991)

    Article  Google Scholar 

  10. http://fpgasoftware.intel.com/?edition=lite (Release date: September) (2018)

  11. S.M. Ismail, L.A. Said, A.A. Rezk, A.G. Radwan, A.H. Madian, M.F. Abu-Elyazeed, A.M. Soliman, Generalized fractional logistic map encryption system based on FPGA. Int. J. Electron. Commun. 80, 114–126 (2017)

    Article  Google Scholar 

  12. G. Kaddoum, Wireless chaos-based communication systems: a comprehensive survey. IEEE Access 4, 2621–2648 (2016)

    Article  Google Scholar 

  13. L. Kocarev, S. Lian, Chaos-Based Cryptography: Theory, Algorithms and Applications, vol. 354 (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  14. F. Lau, C.K. Tse, Chaos-Based Digital Communication Systems (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  15. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  Google Scholar 

  16. I. Pan, S. Das, Evolving chaos: identifying new attractors of the generalised lorenz family. Appl. Math. Model. 57, 391–405 (2018)

    Article  MathSciNet  Google Scholar 

  17. A. Pano-Azucena, E. Tlelo-Cuautle, G. Rodriguez-Gomez, L. de la Fraga, FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. AIP Adv. 8(7), 075217 (2018)

    Article  Google Scholar 

  18. A. Radwan, A. Soliman, A. El-Sedeek, MOS realization of the modified lorenz chaotic system. Chaos Solitons Fract. 21(3), 553–561 (2004)

    Article  MATH  Google Scholar 

  19. A.G. Radwan, S.H. AbdElHaleem, S.K. Abd-El-Hafiz, Symmetric encryption algorithms using chaotic and non-chaotic generators: a review. J. Adv. Res. 7(2), 193–208 (2016)

    Article  Google Scholar 

  20. E. Schöll, Nonlinear Spatio-temporal Dynamics and Chaos in Semiconductors, vol. 10 (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  21. D. Shah, R. Charasiys, V. Vyawahare, K. Pichhode, M. Patil, FPGA implementation of fractional-order chaotic systems. Int. J. Electron. Commun. 78, 245–257 (2017)

    Article  Google Scholar 

  22. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, Boulder, 2014)

    MATH  Google Scholar 

  23. M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, A.G. Radwan, FPGA implementation of two fractional order chaotic systems. Int. J. Electron. Commun. 78, 162–172 (2017)

    Article  Google Scholar 

  24. H. Wang, H.F. Liang, Z.H. Miao, A new color image encryption scheme based on chaos synchronization of time-delay Lorenz system. Adv. Manuf. 4(4), 348–354 (2016)

    Article  Google Scholar 

  25. G.C. Wu, D. Baleanu, Z.X. Lin, Image encryption technique based on fractional chaotic time series. J. Vib. Control 22(8), 2092–2099 (2016)

    Article  MathSciNet  Google Scholar 

  26. S. Yu, J. Lü, W.K. Tang, G. Chen, A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos: an interdisciplinary. J. Nonlinear Sci. 16(3), 033126 (2006)

    MATH  Google Scholar 

  27. M.A. Zidan, A.G. Radwan, K.N. Salama, Controllable V-shape multiscroll butterfly attractor: system and circuit implementation. Int. J. Bifurc. Chaos 22(06), 1250143 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Radwan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, W.S., Radwan, A.G., Elnawawy, M. et al. Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization. Circuits Syst Signal Process 38, 4890–4903 (2019). https://doi.org/10.1007/s00034-019-01096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01096-z

Keywords

Navigation