Skip to main content
Log in

Heart Arrhythmia Classification Based on Statistical Moments and Structural Co-occurrence

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The electrocardiogram (ECG) is a widely disseminated method for detecting heart diseases due to its lower cost than other tests. But, some steps are important for detecting cardiac arrhythmias in ECG signals, which are: preprocessing, segmentation, feature extraction and classification. In this work, we assess how four non-morphological feature extraction methods provide useful ECG classification. Moreover, we propose an innovation in the configuration of the structural co-occurrence matrix (SCM), by combining it with the Fourier transform to extract the main frequencies of the signal. We tested theses methods on four well-known classifiers used in the literature and compare the results with six classical feature extraction methods. Moreover, we followed high standard protocols for developing expert systems for clinical usage. The database chosen for evaluation is the MIT-BIH arrhythmia database. We increased the identification of heart dysrhythmia by 2%, representing an advance on reports on the literature. The developed system is 1.3% more reliable than the current best approach reported, being \(10^6\) times faster, as well. The HOS with naive Bayes classified pathologies in 22 patients with 94.3% of accuracy. We perceived that SCM–Fourier is 1.5% more accurate than the SCM or Fourier standalone. The feature extractor proposed in this paper compress 97% of the useful information to provide a reliable arrhythmia classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://physionet.org/physiobank/database/mitdb/.

References

  1. U.R. Acharya, V.K. Sudarshan, J.E.W. Koh, R.J. Martis, J.H. Tan, S.L. Oh, A. Muhammad, Y. Hagiwara, M.R.K. Mookiah, K.P. Chua, K.C. Chua, R.S. Tan, Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed. Signal Process. Control 31, 31–43 (2017). ISSN 1746-8094

    Article  Google Scholar 

  2. R.G. Afkhami, G. Azarnia, M.A. Tinati, Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit. Lett. 70, 45–51 (2016). ISSN 0167-8655

    Article  Google Scholar 

  3. ANSI/AAMI, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. Technical report, Association for the Advancement of Medical Instrumentation (American National Standards Institute, Inc. (ANSI), 2008)

  4. J. Antoni, The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)

    Article  Google Scholar 

  5. R. Arvanaghi, S. Daneshvar, H. Seyedarabi, A. Goshvarpour, Classification of cardiac arrhythmias using arterial blood pressure based on discrete wavelet transform. Biomed. Eng. Appl. Basis Commun. 29(05), 1750034 (2017)

    Article  Google Scholar 

  6. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012). ISSN 1532-4435

    MathSciNet  MATH  Google Scholar 

  7. V. Capdevielle, C. Serviere, J. Lacoume, Blind separation of wide-band sources: application to rotating machine signals, in European Signal Processing Conference, 1996 (EUSIPCO 1996), 8th edn. (IEEE, 1996), pp. 1–4

  8. P. Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004). ISSN 0018-9294

    Article  Google Scholar 

  9. R. Dwyer, Detection of non-Gaussian signals by frequency domain kurtosis estimation. in Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’83, vol 8 (IEEE, 1983), pp. 607–610

  10. O.K. Ersoy, A comparative review of real and complex Fourier-related transforms. Proc. IEEE 82(3), 429–447 (1994)

    Article  Google Scholar 

  11. R.A. Fisher, On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222(594–604), 309–368 (1922)

    MATH  Google Scholar 

  12. G. Goertzel, An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65, 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  13. R.C. Gonzalez, R.E. Woods, S.L. Eddins et al., Digital Image Processing Using MATLAB, vol. 624 (Pearson/Prentice-Hall, Upper Saddle River, 2004)

    Google Scholar 

  14. I. Güler, E.D. Übeylı, Ecg beat classifier designed by combined neural network model. Pattern Recognit. 38(2), 199–208 (2005). ISSN 0031-3203

    Article  Google Scholar 

  15. S. Haykin, Neural Networks: Principles and Practice. Bookman (2001)

  16. B. Hemmeryckx, Y. Feng, L. Frederix, M. Lox, S. Trenson, R. Vreeken, H.R. Lu, D. Gallacher, Y. Ni, H.R. Lijnen, Evaluation of cardiac arrhythmic risks using a rabbit model of left ventricular systolic dysfunction. Eur. J. Pharmacol. 832, 145–155 (2018). ISSN 0014-2999

    Article  Google Scholar 

  17. G. Israel, S. Ayelet, E. Yair, D.R. Zwas, L. Chaim, K. Andre, Temporal changes in electrocardiographic frontal QRS-T angle and survival in patients with heart failure. PLoS ONE 13(3), e0194520 (2018)

    Article  Google Scholar 

  18. D.P. Kingma, J.Ba. Adam, A method for stochastic optimization. CoRR, arXiv:1412.6980 (2014)

  19. K. Kirti, Accurate interpretation of the 12-lead ECG electrode placement: a systematic review. Health Educ. J. 73(5), 610–623 (2014). ISSN 0017-8969

    Article  Google Scholar 

  20. F. Li, G. Meng, L. Ye, P. Chen, Wavelet transform-based higher-order statistics for fault diagnosis in rolling element bearings. J. Vib. Control 14(11), 1691–1709 (2008)

    Article  Google Scholar 

  21. C.-C. Lin, C.-M. Yang, Heartbeat classification using normalized RR intervals and morphological features. Math. Probl. Eng. 2014, 1–11 (2014). https://doi.org/10.1155/2014/712474

    Article  Google Scholar 

  22. M. Llamedo, J.P. Martínez, Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)

    Article  Google Scholar 

  23. E.J.S. Luz, T.M. Nunes, V.H.C. Albuquerque, J.P. Papa, D. Menotti, Ecg arrhythmia classification based on optimum-path forest. Expert Syst. Appl. 40(9), 3561–3573 (2013). ISSN 0957-4174

    Article  Google Scholar 

  24. E.J.S. Luz, W.R. Schwartz, G. Cámara-Chávez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Progr. Biomed. 127, 144–164 (2016). ISSN 0169-2607

    Article  Google Scholar 

  25. J.P.V. Madeiro, P.C. Cortez, J.A.L. Marques, C.R.V. Seisdedos, R.M.R. Sobrinho Carlos, An innovative approach of QRS segmentation based on first-derivative, Hilbert and wavelet transforms. Med. Eng. Phys. 34(9), 1236–1246 (2012)

    Article  Google Scholar 

  26. J.A.L. Marques, P.C. Cortez, J.P.V. Madeiro, V.H.C. de Albuquerque, S.J. Fong, F.S. Schlindwein, Nonlinear characterization and complexity analysis of cardiotocographic examinations using entropy measures. J. Supercomput. (2018). https://doi.org/10.1007/s11227-018-2570-8. ISSN 1573-0484

  27. H.R. Martin, F. Honarvar, Application of statistical moments to bearing failure detection. Appl. Acoust. 44(1), 67–77 (1995)

    Article  Google Scholar 

  28. J.M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79(3), 278–305 (1991). ISSN 0018-9219

    Article  Google Scholar 

  29. S. Mendis, Global Status Report on Noncommunicable Diseases 2014 (World Health Organization, Geneva, 2014)

    Google Scholar 

  30. G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  31. K. Najarian, R. Splinter, Biomedical Signal and Image Processing (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  32. N.M. Nasrabadi, Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)

    Article  MathSciNet  Google Scholar 

  33. J.P. Papa, A.X. Falcao, C.T.N. Suzuki, Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)

    Article  Google Scholar 

  34. S.A. Peixoto, Rebouças Filho, Neurologist-level classification of stroke using a structural co-occurrence matrix based on the frequency domain. Comput. Electr. Eng. 71, 398–407 (2018). ISSN 0045-7906

    Article  Google Scholar 

  35. PhysioBank PhysioToolkit, Physionet: components of a new research resource for complex physiologic signals. Circulation v101 i23, e215–e220 (2000)

  36. P. Pławiak, Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 92, 334–349 (2018)

    Article  Google Scholar 

  37. A. Rahhal, M. Mohamad, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, R.R. Yager, Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016)

    Article  Google Scholar 

  38. G.L.B. Ramalho, D.S. Ferreira, P.P. Rebouças Filho, F.N.S. de Medeiros, Rotation-invariant feature extraction using a structural co-occurrence matrix. Measurement 94, 406–415 (2016)

    Article  Google Scholar 

  39. P.P. Rebouças Filho, N.M.M. Nascimento, I.R. Sousa, C.M.S. Medeiros, V.H.C. Albuquerque, A reliable approach for detection of incipient faults of short-circuits in induction generators using machine learning. Comput. Electr. Eng. 71, 440–451 (2018)

    Article  Google Scholar 

  40. P.P. Rebouças Filho, S.A. Peixoto, R.V. Medeiros da Nóbrega, D.J. Hemanth, A.G. Medeiros, A.K. Sangaiah, V.H.C. de Albuquerque, Automatic histologically-closer classification of skin lesions. Comput. Med. Imaging Graph. 68, 40–54 (2018). https://doi.org/10.1016/j.compmedimag.2018.05.004

    Article  Google Scholar 

  41. R. Saktheeswari, K. Adalarasu, Survey on signal processing techniques for diagnoising cardiovascular diseases, in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (2017), pp. 1–4

  42. B. Samanta, K.R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech. Syst. Signal Process. 17(2), 317–328 (2003)

    Article  Google Scholar 

  43. S.P. Silva, L.B. Marinho, J.S. Almeida, P.P. Rebouças Filho, A novel approach for mobile robot localization in topological maps using classification with reject option from structural co-occurrence matrix, in International Conference on Computer Analysis of Images and Patterns (Springer, Berlin, 2017), pp. 3–15

  44. M.H. Song, J. Lee, S.P. Cho, K.J. Lee, S.K. Yoo, Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4), 571–579 (2005)

    Google Scholar 

  45. J.W.M. de Souza, S.S.A. Alves, E.S. Rebouças, J.S. Almeida, P.P. Rebouças Filho, A new approach to diagnose parkinson’s disease using a structural cooccurrence matrix for a similarity analysis. Comput. Intell. Neurosci. 2018, 1–8 (2018). https://doi.org/10.1155/2018/7613282

    Article  Google Scholar 

  46. V.N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  47. J. Wang, Q. Chen, Y. Chen, RBF kernel based support vector machine with universal approximation and its application, in eds. by F. Yin, J. Wang, C. Guo, Advances in Neural Networks (Springer, Berlin, 2004), pp. 512–517. ISBN 978-3-540-28647-9

    Chapter  Google Scholar 

  48. C. Ye, M.T. Coimbra, B.V.K.V. Kumar, Arrhythmia detection and classification using morphological and dynamic features of ECG signals, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (IEEE, 2010), pp. 1918–1921

  49. S. Yu, Y. Chen, Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognit. Lett. 28(10), 1142–1150 (2007)

    Article  Google Scholar 

  50. S. Yu, K. Chou, Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34(4), 2841–2846 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the sponsorship from the Coordination for the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) by providing financial support. This study was financed in part by CAPES—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Hugo C. de Albuquerque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, N.M.M., Marinho, L.B., Peixoto, S.A. et al. Heart Arrhythmia Classification Based on Statistical Moments and Structural Co-occurrence. Circuits Syst Signal Process 39, 631–650 (2020). https://doi.org/10.1007/s00034-019-01196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01196-w

Keywords

Navigation