Skip to main content
Log in

A Novel Approach for the Design of Optimum IIR Differentiators Using Fractional Interpolation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel method for designing an optimum infinite impulse response digital differentiator of the first and second orders is presented. The proposed method interpolates bilinear transform and rectangular transform fractionally, and then, unknown variables of the generalized equation are optimized using the genetic algorithm. The results obtained by the proposed designs are superior to all state-of-the-art designs in terms of magnitude responses. The first-order and second-order differentiator attains mean relative magnitude error as low as \(-\,27.702\) (dB) and \(-\,35.04\) (dB), respectively, in the complete Nyquist range. Besides, suggested low-order, differentiator design equations can also be optimized of any desired Nyquist frequency range, which makes it suitable for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Aggarwal, T.K. Rawat, M. Kumar, D.K. Upadhyay, Optimal design of FIR high pass filter based on \(L_1\) error approximation using real coded genetic algorithm. Int. J. Eng. Sci. Technol. 18(4), 594–602 (2015)

    Article  Google Scholar 

  2. A. Aggarwal, T. Rawat, D.K. Upadhyay, Optimal design of \(L1\)-norm based IIR digital differentiators and integrators using the bat algorithm. IET Signal Process. 11(1), 26–35 (2017)

    Article  Google Scholar 

  3. M.A. Al-Alaoui, Novel FIR approximations of IIR differentiators with applications to image edge detection, in 18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut, pp. 554–558 (2011)

  4. M.A. Al-Alaoui, Novel approach to designing digital differentiators. Electron. Lett. 28(15), 1376–1378 (1992)

    Article  Google Scholar 

  5. M.A. Al-Alaoui, Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  6. M.A. Al-Alaoui, Novel IIR differentiator from the Simpson integration rule. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(2), 186–187 (1994)

    Article  Google Scholar 

  7. M.A. Al-Alaoui, A class of second-order integrators and low-pass differentiators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(4), 220–223 (1995)

    Article  Google Scholar 

  8. M.A. Al-Alaoui, M. Baydoun, Novel wide band digital differentiators and integrators using different optimization techniques, in International Symposium on Signals, Circuits and Systems ISSCS, Iasi, pp. 1–4 (2013)

  9. M.A. Al-Alaoui, Class of digital integrators and differentiators. IET Signal Process. 5(2), 251–260 (2011)

    Article  Google Scholar 

  10. A. Atangana, J.F. Gómez-Aguilar, A new derivative with normal distribution kernel: theory, methods and applications. Physica A Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  11. A. Atangana, J.F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  Google Scholar 

  12. A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 166 (2018)

    Article  Google Scholar 

  13. S.A. Dyer, J.S. Dyer, The bilinear transformation. IEEE Instrum. Meas. Mag. 3(1), 30–34 (2000)

    Article  Google Scholar 

  14. J.F. Gómez-Aguilar, A. Atangana, New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 13 (2017)

    Article  Google Scholar 

  15. M. Gupta, M. Jain, B. Kumar, Novel class of stable wideband recursive digital integrators and differentiators. IET Signal Process. 4(5), 560–566 (2010)

    Article  Google Scholar 

  16. M. Gupta, M. Jain, B. Kumar, Recursive wideband digital integrator and differentiator. Int. J. Circuit Theory Appl. 39(7), 775–782 (2011)

    Article  Google Scholar 

  17. M. Jain, M. Gupta, N. Jain, Linear phase second order recursive digital integrators and differentiators. Radioengineering 21(2), 712–717 (2012)

    Google Scholar 

  18. T.I. Laakso, V. Valimaki, M. Karjalainen, U.K. Laine, Splitting the unit delay: tool for fractional delay filter design. IEEE Signal Process. Mag. 13(1), 30–60 (1996)

    Article  Google Scholar 

  19. P. Laguna, N.V. Thakor, P. Caminal, R. Jane, Low-pass differentiators for biological signals with known spectra: application to ECG signal processing. IEEE Trans. Biomed. Eng. 37(4), 420–425 (1990)

    Article  Google Scholar 

  20. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1996)

    MATH  Google Scholar 

  21. N.Q. Ngo, A new approach for the design of wideband digital integrator and differentiator. IEEE Trans. Circuits Syst. II Express Briefs 53(9), 936–940 (2006)

    Article  Google Scholar 

  22. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1999)

    Google Scholar 

  23. N. Papamarkos, C. Chamzas, A new approach for the design of digital integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 785–791 (1996)

    Article  Google Scholar 

  24. S. Pei, H. Hsu, Fractional bilinear transform for analog-to-digital conversion. IEEE Trans. Signal Process. 56(5), 2122–2127 (2008)

    Article  MathSciNet  Google Scholar 

  25. J.T. Tsai, J.H. Chou, T.K. Liu, Optimal design of digital IIR filters by using hybrid taguchi genetic algorithm. IEEE Trans. Ind. Electron. 53(3), 867–879 (2006)

    Article  Google Scholar 

  26. D.K. Upadhyay, Recursive wideband digital differentiators. Electron. Lett. 46(25), 1661–1662 (2010)

    Article  Google Scholar 

  27. D.K. Upadhyay, R.K. Singh, Recursive wideband digital differentiator and integrator. Electron. Lett. 47(11), 647–648 (2011)

    Article  Google Scholar 

  28. D.K. Upadhyay, Class of recursive wideband digital differentiators and integrators. Radioengineering 21(3), 904–910 (2012)

    Google Scholar 

  29. Y. Xu, T. Dai, K. Sycara, M. Lewis, Service level differentiation in multi-robots control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, pp. 2224–2230 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, O.P., Rawat, T.K. & Upadhyay, D.K. A Novel Approach for the Design of Optimum IIR Differentiators Using Fractional Interpolation. Circuits Syst Signal Process 39, 1688–1698 (2020). https://doi.org/10.1007/s00034-019-01211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01211-0

Keywords

Navigation