Skip to main content
Log in

Semi-blind Data-Selective and Multiple Threshold Volterra Adaptive Filtering

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work proposes the use of data-selective semi-blind schemes in order to decrease the amount of data used to train the adaptive filters that employ Volterra series, while reducing its computational complexity. It is also proposed a data-selective technique that exploits the structure of Volterra series, employing a different filter for each of its kernels. The parameter vector of these filters grows as the order of the kernel increases. Therefore, by assigning larger error thresholds to higher-order filters, it is possible to decrease their update rates, thus reducing the overall computational complexity. Results in an equalization setup indicate that both proposals are capable of achieving promising results in terms of mean square error and bit error rate at low computational complexity, and in the case of semi-blind algorithms, using much less training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The elements of the kernels are related to the order of the product of the terms of the Volterra series. As described in (3), the entries of the Nth-order kernel are related to N products. For example, the first-order kernel elements are related to the linear terms, while the second-order elements are related to the quadratic ones, and so on.

  2. Despite the sum of number of elements of \(\mathbf {w}_1[k]\) and \(\mathbf {w}_2[k]\) is 2L, due to the partial-update technique, only L elements are actually updated in this case.

References

  1. J. Arenas-Garcia, L.A. Azpicueta-Ruiz, M.T.M. Silva, V.H. Nascimento, A.H. Sayed, Combinations of adaptive filters: performance and convergence properties. IEEE Signal Process. Mag. 33(1), 120–140 (2016)

    Article  Google Scholar 

  2. A. Bakhshali, W. Chan, J.C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, K. Roberts, Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities. J. Lightwave Technol. 34(8), 1770–1777 (2016)

    Article  Google Scholar 

  3. S. Benedetto, E. Biglieri, Nonlinear equalization of digital satellite channels. IEEE J. Sel. Areas Commun. 1(1), 57–62 (1983)

    Article  Google Scholar 

  4. S. Benedetto, E. Biglieri, R. Daffara, Modeling and performance evaluation of nonlinear satellite links—a Volterra series approach. IEEE Trans. Aerosp. Electron. Syst. 15(4), 494–507 (1979)

    Article  Google Scholar 

  5. H. Boche, E. Tampubolon, PAPR problem for Walsh systems and related problems. IEEE Trans. Inf. Theory 64, 5531–5548 (2018)

    Article  MathSciNet  Google Scholar 

  6. S. Boyd, L. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)

    Article  MathSciNet  Google Scholar 

  7. J.J. Bussgang, L. Ehrman, J.W. Graham, Analysis of nonlinear systems with multiple inputs. Proc. IEEE 62(8), 1088–1119 (1974)

    Article  Google Scholar 

  8. L.F.O. Chamon, W.B. Lopes, C.G. Lopes, Combination of adaptive filters with coefficients feedback, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Kyoto, Japan, 2012), pp. 3785–3788

  9. F.B. da Silva, W.A. Martins, A computational platform for visible light communications. In: XXXV Simpósio Brasileiro de Telecomunicções e Processamento de Sinais (SBrT 2017) (São Pedro, Brazil, 2017), pp. 891–895

  10. F.B. da Silva, W.A. Martins, Data-selective volterra adaptive filters. Circuits Syst. Signal Process. 37, 4651–4664 (2018)

    Article  Google Scholar 

  11. J.H.M. Goulart, M. Boizard, R. Boyer, G. Favier, P. Comon, Tensor CP decomposition with structured factor matrices: algorithms and performance. IEEE J. Sel. Top. Signal Process. 10(4), 757–769 (2016)

    Article  Google Scholar 

  12. S. Dimitrov, H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge University Press, London, 2015)

    Book  Google Scholar 

  13. P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th edn. (Springer, New York, 2012)

    MATH  Google Scholar 

  14. P.S.R. Diniz, M.V.S. Lima, W.A. Martins, Semi-blind data-selective algorithms for channel equalization, in IEEE International Symposium on Circuits and Systems (Seattle, 2008), pp. 53–56

  15. K. Dogancay, O. Tanrikulu, Adaptive filtering algorithms with selective partial updates. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(8), 762–769 (2001)

    Article  Google Scholar 

  16. S.C. Douglas, Adaptive filters employing partial updates. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(3), 209–216 (1997)

    Article  Google Scholar 

  17. M. Faifer, C. Laurano, R. Ottoboni, M. Prioli, S. Toscani, M. Zanoni, Definition of simplified frequency-domain Volterra models with quasi-sinusoidal input. IEEE Trans. Circuits Syst. I Regul. Pap. 65(5), 1652–1663 (2018)

    Article  Google Scholar 

  18. G.B. Giannakis, E. Serpedin, Linear multichannel blind equalizers of nonlinear FIR Volterra channels. IEEE Trans. Signal Process. 45(1), 67–81 (1997)

    Article  Google Scholar 

  19. S.H. Han, J.H. Lee, An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel. Commun. 12(2), 56–65 (2005)

    Article  MathSciNet  Google Scholar 

  20. V. Kekatos, G.B. Giannakis, Sparse Volterra and polynomial regression models: recoverability and estimation. IEEE Trans. Signal Process. 59(12), 5907–5920 (2011)

    Article  MathSciNet  Google Scholar 

  21. A.Y. Kibangou, G. Favier, Tensor analysis-based model structure determination and parameter estimation for block-oriented nonlinear systems. IEEE J. Sel. Top. Signal Process. 4(3), 514–525 (2010)

    Article  Google Scholar 

  22. K.J. Layton, A. Mehboob, A. Akhlaq, F. Bagaglini, W.G. Cowley, G. Lechner, Predistortion for wideband nonlinear satellite downlinks. IEEE Commun. Lett. 21(9), 1985–1988 (2017)

    Article  Google Scholar 

  23. M. Martinez-Ramon, J. Arenas-Garcia, A. Navia-Vazquez, A.R. Figueiras-Vidal, An adaptive combination of adaptive filters for plant identification, in 14th International Conference on Digital Signal Processing Proceedings, vol. 2, DSP 2002 (Santorini, Greece, 2002), pp. 1195–1198

  24. W.A. Martins, M.V.S. Lima, P.S.R. Diniz, Semi-blind data-selective equalizers for QAM, in IEEE 9th Workshop on Signal Processing Advances in Wireless Communications (Recife, Brazil, 2008), pp. 501–505

  25. V.J. Mathews, Adaptive polynomial filters. IEEE Signal Process. Mag. 8(3), 10–26 (1991)

    Article  Google Scholar 

  26. V.H. Nascimento, R.C. de Lamare, A low-complexity strategy for speeding up the convergence of convex combinations of adaptive filters, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Kyoto, Japan, 2012), pp. 3553–3556

  27. S.M. Serunjogi, M.A. Sanduleanu, M.S. Rasras, Volterra series based linearity analysis of a phase-modulated microwave photonic link. J. Lightwave Technol. 36(9), 1537–1551 (2018)

    Article  Google Scholar 

  28. M.T.M. Silva, V.H. Nascimento, Convex combination of adaptive filters with different tracking capabilities, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICAASSP), vol. 3, (Honolulu, Hawaii, USA, 2007), pp. III–925–III–928

  29. Y. Wang, L. Tao, X. Huang, J. Shi, N. Chi, Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer. IEEE Photon. J. 7(3), 1–7 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq, CAPES (Grant No. 23038.009440/2012-42), and FAPERJ, Brazilian research councils, for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe B. da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.B., Martins, W.A. Semi-blind Data-Selective and Multiple Threshold Volterra Adaptive Filtering. Circuits Syst Signal Process 39, 1509–1532 (2020). https://doi.org/10.1007/s00034-019-01219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01219-6

Keywords

Navigation