Skip to main content
Log in

Detection of Frequency Modulated Signals Using a Robust IF Estimation Algorithm

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a methodology to detect non-stationary frequency modulated signals under noise process uncertainty. The proposed method uses the combination of adaptive directional time–frequency distribution and modified Viterbi algorithm to robustly estimate the instantaneous frequency (IF) of the given signal. This IF information is then used to remove the frequency modulation from the given signal thus converting it into temporally correlated signal. This temporal correlation is then exploited to detect signals under noise power uncertainty. The effectiveness of the proposed detector is shown through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Ali, G. Seco-Granados, J.A. Lopez-Salcedo, Spectrum sensing with spatial signatures in the presence of noise uncertainty and shadowing. EURASIP J. Wirel. Commun. Netw. 2013, 1–16 (2013). https://doi.org/10.1186/1687-1499-2013-150

    Article  Google Scholar 

  2. S. Ali, D. Ramírez, M. Jansson, G. Seco-Granados, J.A. López-Salcedo, Multi-antenna spectrum sensing by exploiting spatio-temporal correlation. EURASIP J. Adv. Signal Process. 2014(1), 1–16 (2014)

    Article  Google Scholar 

  3. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, vol. 2, 2nd edn. (Wiley, Hoboken, 2003)

    MATH  Google Scholar 

  4. W.G. Anderson, R. Balasubramanian, Time–frequency detection of gravitational waves. Phys. Rev. D. (Part. Fields Gravit. Cosmol.) 60(10), 102011 (1999)

    Google Scholar 

  5. E. Axell, G. Leus, E.G. Larsson, H.V. Poor, Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)

    Article  Google Scholar 

  6. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. ii. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)

    Article  Google Scholar 

  7. B. Boashash, P. O’Shea, Polynomial Wigner–Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans. Signal Process. 42(1), 216–220 (1994)

    Article  Google Scholar 

  8. S. Chen, X. Dong, Z. Peng, W. Zhang, G. Meng, Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Cohen, Time–frequency distributions—a review. Proc. IEEE 77(7), 941–981 (1989)

    Article  Google Scholar 

  10. M. Daković, T. Thayaparan, L. Stanković, Time–frequency-based detection of fast manoeuvring targets. IET Signal process. 4(3), 287–297 (2010)

    Article  Google Scholar 

  11. I. Djurović, L.J. Stanković, An algorithm for the wigner distribution based instantaneous frequency estimation in a high noise environment. Signal Process. 84(3), 631–643 (2004)

    Article  MATH  Google Scholar 

  12. V. Katkovnik, L. Stankovic, Instantaneous frequency estimation using the wigner distribution with varying and data-driven window length. IEEE Trans. Signal Process. 46(9), 2315–2325 (1998)

    Article  Google Scholar 

  13. N.A. Khan, S. Ali, Exploiting temporal correlation for detection of non-stationary signals using a de-chirping method based on time–frequency analysis. Circ. Syst. Signal Process. 37(8), 3136–3153 (2018)

    Article  MathSciNet  Google Scholar 

  14. N.A. Khan, S. Ali, Sparsity-aware adaptive directional time–frequency distribution for source localization. Circ. Syst. Signal Process. 37(3), 1223–1242 (2018)

    Article  MathSciNet  Google Scholar 

  15. N.A. Khan, M. Mohammadi, S. Ali, Instantaneous frequency estimation of intersecting and close multi-component signals with varying amplitudes. Signal Image Video Process. 13(3), 517–524 (2018)

    Article  Google Scholar 

  16. N.A. Khan, M. Mohammadi, I. Djurović, A modified Viterbi algorithm-based if estimation algorithm for adaptive directional time–frequency distributions. Circuits Syst. Signal Process. 38(5), 2227–2244 (2018)

    Article  Google Scholar 

  17. H.K. Kwok, D.L. Jones, Improved instantaneous frequency estimation using an adaptive short-time fourier transform. IEEE Trans. Signal Process. 48(10), 2964–2972 (2000)

    Article  MathSciNet  Google Scholar 

  18. J. Lerga, V. Sucic, Nonlinear if estimation based on the pseudo WVD adapted using the improved sliding pairwise ICI rule. IEEE Signal Process. Lett. 16(11), 953–956 (2009)

    Article  Google Scholar 

  19. X. Li, G. Bi, S. Stankovic, A.M. Zoubir, Local polynomial fourier transform: a review on recent developments and applications. Signal Process. 91(6), 1370–1393 (2011)

    Article  MATH  Google Scholar 

  20. S. Meignen, D.-H. Pham, S. McLaughlin, On demodulation, ridge detection, and synchrosqueezing for multicomponent signals. IEEE Trans. Signal Process. 65(8), 2093–2103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. Signal Image Video Process. 10(7), 1369–1376 (2016)

    Article  Google Scholar 

  22. S.J. Shellhammer, S. Shankar, R. Tandra, J. Tomcik, Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs, in Proceedings of 1st International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), (2006), pp. 4–13

  23. P.-L. Shui, Z. Bao, S. Hong-Tao, Nonparametric detection of fm signals using time–frequency ridge energy. IEEE Trans. Signal Process. 56(5), 1749–1760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.J. Stankovic, I. Djurovic, A. Ohsumi, H. Ijima, Instantaneous frequency estimation by using Wigner distribution and Viterbi algorithm, in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings of ICASSP’03, vol. 6, (IEEE, 2003), p. VI–121

  25. L. Stankovic, A multitime definition of the wigner higher order distribution: L-wigner distribution. IEEE Signal Process. Lett. 1(7), 106–109 (1994)

    Article  Google Scholar 

  26. L. Stanković, Local polynomial wigner distribution. Signal Process. 59(1), 123–128 (1997)

    Article  MATH  Google Scholar 

  27. L.J. Stanković, T. Alieva, M.J. Bastiaans, Time–frequency signal analysis based on the windowed fractional fourier transform. Signal Process. 83(11), 2459–2468 (2003)

    Article  MATH  Google Scholar 

  28. R. Tandra, A. Sahai, SNR walls for signal detection. IEEE J. Sel. Top. Signal Process. 2(1), 17–24 (2008)

    Article  Google Scholar 

  29. E. Visotsky, S. Kuffner, R. Peterson, On collaborative detection of TV transmissions in support of dynamic spectrum sharing, in Proceedings of 1st IEEE DySPAN, (2005), pp. 338–345

  30. P. Wang, H. Li, B. Himed, Instantaneous frequency estimation of polynomial phase signals using local polynomial Wigner–Ville distribution, in 2010 International Conference on Electromagnetics in Advanced Applications, (IEEE, 2010), pp. 184–187

  31. S. Wang, X. Chen, G. Cai, B. Chen, X. Li, Z. He, Matching demodulation transform and synchrosqueezing in time–frequency analysis. IEEE Trans. Signal Process. 62(1), 69–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Yang, G. Durisiand, V.I. Morgenshtern, E. Riegler, Capacity pre-log of SIMO correlated block-fading channels, in 8th International Symposium Wireless Communication Systems (ISWCS), (2011), pp. 869 –873

  33. Y. Zeng, Y.-C. Liang, A.T. Hoang, R. Zhang, A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process. 2:2–2:2 (2010)

  34. Y. Zeng, Y. Liang, Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)

    Article  Google Scholar 

  35. Y. Zeng, Y.-C. Liang, Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Trans. Veh. Technol. 58(4), 1804–1815 (2009). https://doi.org/10.1109/TVT.2008.20052675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Ali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Mohammadi, M. Detection of Frequency Modulated Signals Using a Robust IF Estimation Algorithm. Circuits Syst Signal Process 39, 2223–2231 (2020). https://doi.org/10.1007/s00034-019-01258-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01258-z

Keywords

Navigation