Skip to main content
Log in

Robust Dynamic Output Feedback Control for Uncertain Fast Sampling Discrete-Time Singularly Perturbed Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the dynamic output feedback (DOF) control problems for a class of uncertain discrete-time singularly perturbed systems by using reduced-order subsystems (ROSs). A sufficient condition in terms of a linear matrix inequality (LMI) is provided to guarantee the existence of the DOF controller of the ROSs. The corresponding controller gain matrices can be solved by the proposed LMIs. The results show that the DOF controller that is designed for the ROSs can stabilize the original full-order system (FOS) when the perturbation parameter is sufficiently small, although there are system uncertainties. Thus, the presented DOF controller guarantees that the FOS is robust not only for the singular perturbation parameter but also for the system uncertainties. Furthermore, we also explicitly show that this case fails when using static output feedback. That is, a static output feedback controller can always be found to stabilize the ROSs, but it destabilizes the FOSs. Finally, an experimental example for the nuclear reactor model is employed to illustrate the validity and feasibility of the developed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.A. Abdelrahman, D.S. Naidu, C. Charalambous, K.L. Moore, Finite-time disturbance attenuation control problem for singularly perturbed discrete-time systems. Optim. Control Appl. Methods 19, 137–145 (1998)

    Article  MathSciNet  Google Scholar 

  2. B. Abraham-Shrauner, Perturbation expansions for the potential of a small radius charged dielectric sphere in 1-1 electrolytes. SIAM J. Appl. Math. 27, 165–173 (1974)

    Article  Google Scholar 

  3. G. Blankenship, Singularly perturbed difference equations in optimal control problems. IEEE Trans. Autom. Control 26, 911–917 (1981)

    Article  MathSciNet  Google Scholar 

  4. M. Corless, L. Glielmo, Robustness of output feedback for a class of singularly perturbed nonlinear systems, in Proceedings of the 30th Conference on Decision and Control (1991), pp. 1066–1071

  5. K.B. Datta, A. RaiChaudhuri, H2/H control of discrete singularly perturbed systems: the state feedback case. Automatica 38, 1791–1797 (2002)

    Article  Google Scholar 

  6. J. Dong, G.H. Yang, Robust H control for standard discrete-time singularly perturbed systems. IET Control Theory Appl. 1, 1141–1148 (2007)

    Article  MathSciNet  Google Scholar 

  7. J. Dong, G.H. Yang, H control for fast sampling discrete-time singularly perturbed systems. Automatica 44, 1385–1393 (2008)

    Article  MathSciNet  Google Scholar 

  8. C.L. Du, F.B. Li, C.H. Yang, An improved homogeneous polynomial approach for adaptive sliding mode control of Markov jump systems with actuator faults. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2915006

    Article  Google Scholar 

  9. L. Glielmo, M. Corless, On output feedback control of singularly perturbed systems. Appl. Math. Comput. 217, 1053–1070 (2010)

    MathSciNet  MATH  Google Scholar 

  10. P.V. Kokotovic, H.K. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)

    MATH  Google Scholar 

  11. X. Li, F.B. Li, X. Zhang, C.H. Yang, W.H. Gui, Exponential stability analysis for delayed Semi-Markovian recurrent neural networks: a homogeneous polynomial approach. IEEE Trans. Neural Netw. Learn. Syst. 29, 6374–6384 (2018)

    Article  MathSciNet  Google Scholar 

  12. T.H.S. Li, J.S. Chiou, F.C. Kung, Stability bounds of singularly perturbed discrete systems. IEEE Trans. Autom. Control 44, 1934–1938 (1999)

    Article  MathSciNet  Google Scholar 

  13. T.H.S. Li, M.S. Wang, Y.Y. Sun, Dynamic output feedback design for singularly perturbed discrete systems. IMA J. Math. Control Inf. 13, 105–115 (1996)

    Article  MathSciNet  Google Scholar 

  14. W. Liu, Z.M. Wang, H.H. Dai, M. Naz, Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems. IET Control Theory Appl. 10, 1782–1788 (2016)

    Article  MathSciNet  Google Scholar 

  15. W. Liu, Y.Y. Wang, Z.M. Wang, H observer-based sliding mode control for singularly perturbed systems with input nonlinearity. Nonlinear Dyn. 85, 573–582 (2016)

    Article  MathSciNet  Google Scholar 

  16. B. Litkouhi, H.K. Khalil, Multirate and composite control of two-time-scale discrete–time systems. IEEE Trans. Autom. Control 30, 645–651 (1985)

    Article  MathSciNet  Google Scholar 

  17. M.S. Mahmoud, Design of observer-based controllers for a class of discrete systems. Automatica 18, 323–328 (1982)

    Article  MathSciNet  Google Scholar 

  18. M.S. Mahmoud, M.G. Singh, On the use of reduced-order models in output feedback design of discrete systems. Automatica 21, 485–489 (1985)

    Article  Google Scholar 

  19. D.S. Naidu, Singular perturbations and time scales in control theory and applications: an overview, dynamics of continuous. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 233–278 (2002)

    MathSciNet  MATH  Google Scholar 

  20. H. Oloomi, M.E. Sawan, The observer-based controller design of discrete-time singularly perturbed systems. IEEE Trans. Autom. Control 32, 246–248 (1987)

    Article  Google Scholar 

  21. R.E. O’Malley, Introduction to Singular Perturbations (Academic Press, New York, 1974)

    MATH  Google Scholar 

  22. S.T. Pan, F.H. Hsiao, C.C. Teng, Dynamic output feedback control of nonlinear singularly perturbed systems. J. Franklin Inst. 333, 947–973 (1996)

    Article  MathSciNet  Google Scholar 

  23. S.S. Sastry, C.A. Desoer, Jump behavior of circuits and systems. IEEE Trans. Circuits Syst. 28, 1109–1124 (1982)

    Article  MathSciNet  Google Scholar 

  24. Z.H. Shao, Robust stability of two-time-scale systems with nonlinear uncertainties. IEEE Trans. Autom. Control 49, 258–261 (2004)

    Article  MathSciNet  Google Scholar 

  25. H. Shen, Y.Z. Men, Z.G. Wu, J.H. Park, Nonfragile H∞ control for fuzzy Markovian jump systems under fast sampling singular perturbation. IEEE Trans. Syst. Man Cybern. 48, 2058–2069 (2018)

    Article  Google Scholar 

  26. H. Shen, F. Li, Z.G. Wu, J.H. Park, V. Screeram, Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with Semi-Markov jump parameters. IEEE Trans. Fuzzy Syst. 26, 3428–3439 (2018)

    Article  Google Scholar 

  27. P. Shi, S.P. Shue, R.K. Agarwal, Robust disturbance attenuation with stability for a class of uncertain singularly perturbed systems. Int. J. Control 70, 873–891 (1998)

    Article  MathSciNet  Google Scholar 

  28. F. Sun, Y. Hu, H. Liu, Stability analysis and robust controller design for uncertain discrete-time singularly perturbed systems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 12, 849–865 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Y.T. Tian, W. Liu, X.J. Que, Feedback stabilization of discrete time singularly perturbed systems with communication constraints. Asian J. Control (2019). https://doi.org/10.1002/asjc.202316

    Article  Google Scholar 

  30. T.V. Vu, M.E. Sawan, H control for singularly perturbed sampled data systems, in Proceedings-IEEE International Symposium on Circuits and Systems, Chicago, IL (1993), pp. 2506–2509

  31. X.B. Wan, Z.D. Wang, M. Wu, X.H. Liu, H∞ State estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst. 30, 415–426 (2019)

    Article  MathSciNet  Google Scholar 

  32. Y.Y. Wang, W. Liu, J.Z. Xu, Feedback stabilization of singularly perturbed systems under information constraints. Asian J. Control 18, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  33. S. Xu, G. Feng, New results on H control of discrete singularly perturbed systems. Automatica 45, 2339–2343 (2009)

    Article  MathSciNet  Google Scholar 

  34. C.Y. Yang, Z.Y. Che, L.N. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances. Circuits Syst. Signal Process. 38, 1561–1582 (2019)

    Article  MathSciNet  Google Scholar 

  35. C.Y. Yang, Q.L. Zhang, J. Sun, T.Y. Chai, Lur’e Lyapunov function and absolute stability criterion for Lur’e singularly perturbed systems. IEEE Trans. Autom. Control 56, 2666–2671 (2011)

    Article  MathSciNet  Google Scholar 

  36. C.Y. Yang, L.N. Zhou, H∞ control and ε-bound estimation of discrete-time singularly perturbed systems. Circuits Syst Signal Process 35, 2640–2654 (2016)

    Article  MathSciNet  Google Scholar 

  37. S.A. Zaid, P.W. Sauer, M.A. Pai, M.K. Sariuglu, Reduced order modeling of synchronous machines using singular perturbation. IEEE Trans. Circuits Syst. 29, 782–786 (1981)

    Article  Google Scholar 

  38. Y. Zhang, D.S. Naidu, C.X. Cai, Y. Zou, Composite control of a class of nonlinear singularly perturbed discrete-time systems via D-SDRE. Int. J. Syst. Sci. 47, 2632–2641 (2016)

    Article  MathSciNet  Google Scholar 

  39. M. Zhang, C. Shen, Z.G. Wu, D. Zang, Dissipative filtering for switched fuzzy systems with missing measurements. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2908430

    Article  Google Scholar 

  40. M. Zhang, P. Shi, L.H. Ma, J.P. Cai, H.Y. Su, Network-based fuzzy control for nonlinear Markov jump systems subject to quantization and dropout compensation. Fuzzy Sets Syst. 371, 96–109 (2019)

    Article  MathSciNet  Google Scholar 

  41. M. Zhang, P. Shi, L.H. Ma, J.P. Cai, H.Y. Su, Quantized feedback control of fuzzy Markov jump systems. IEEE Trans. Cybern. 49, 3375–3384 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (61703447), the Key Teachers Research Foundation of the Henan Higher Education Institutions of China (2019GGJS217), the Research Foundation of the Henan Higher Education Institutions of China (18A110039) and the Key Teachers Research Foundation of Zhoukou Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, W., Liu, G. et al. Robust Dynamic Output Feedback Control for Uncertain Fast Sampling Discrete-Time Singularly Perturbed Systems. Circuits Syst Signal Process 39, 3372–3388 (2020). https://doi.org/10.1007/s00034-019-01319-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01319-3

Keywords

Navigation