Skip to main content
Log in

Wave Digital Modeling of Nonlinear 3-terminal Devices for Virtual Analog Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a novel modeling method for circuits containing arbitrary nonlinear 3-terminal devices, which operates in the wave digital (WD) domain. This approach leads to the definition of a general and flexible WD model for 3-terminal devices, whose number of ports varies from 1 to 6. The generality of the method is confirmed by the fact that the WD models of 3-terminal devices already discussed in the literature can be seen as particular cases of the model that we present here. As examples of applications of our method, we develop WD models of the three most widespread types of transistors in audio circuitry, i.e., the MOSFET, the JFET and the BJT. These models are here designed to be used in Virtual Analog audio applications; therefore, their derivation is aimed at minimizing computational complexity while avoiding implicit relations between port variables, as far as possible. Proposed MOSFET and JFET models are characterized by third-order polynomial equations; hence, explicit closed-form wave scattering relations are obtained. On the other hand, the Ebers–Moll model describing the BJT results in transcendental equations in the WD domain that cannot be solved analytically. In order to cope with this problem, we propose a modified Newton–Raphson (NR) method for solving the implicit Ebers–Moll equations in the WD domain. Such iterative method exhibits a significantly higher robustness and convergence rate with respect to the traditional NR method, without compromising its efficiency. Finally, WD implementations of some audio circuits containing transistors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Bernardini, P. Maffezzoni, L. Daniel, A. Sarti, Wave-based analysis of large nonlinear photovoltaic arrays. IEEE Trans. Circuits Syst. I Regul. Papers 65(4), 1363–1376 (2018)

    Article  MathSciNet  Google Scholar 

  2. A. Bernardini, P. Maffezzoni, A. Sarti, Linear multistep discretization methods with variable step-size in nonlinear wave digital structures for virtual analog modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 27(11), 1763–1776 (2019)

    Article  Google Scholar 

  3. A. Bernardini, A. Sarti, Biparametric wave digital filters. IEEE Trans. Circuits Syst. I Regul. Papers 64(7), 1826–1838 (2017)

    Article  MathSciNet  Google Scholar 

  4. A. Bernardini, A. Sarti, Canonical piecewise-linear representation of curves in the wave digital domain, in Proceedings 25th European Signal Processing Conference (EUSIPCO) (2017) pp. 1125–1129

  5. A. Bernardini, A. Sarti, Towards inverse virtual analog modeling, in Proceedings 22nd International Conference Digital Audio Effects (DAFx 2019), Birmingham, UK (2019)

  6. A. Bernardini, A. Sarti, P. Maffezzoni, L. Daniel, Wave digital-based variability analysis of electrical mismatch in photovoltaic arrays, in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy (2018)

  7. A. Bernardini, K.J Werner, P. Maffezzoni, A. Sarti, Wave digital modeling of the diode-based ring modulator, in Proceedings 144th Audio Engineering Society (AES) Convention, Milan, Italy (2018). Convention paper #10015

  8. A. Bernardini, K.J. Werner, A. Sarti., J.O. Smith III, Modeling a class of multi-port nonlinearities in wave digital structures, in Proceedings European Signal Processing Conference (EUSIPCO), Nice, France (2015), pp. 669–673

  9. A. Bernardini, K.J. Werner, A. Sarti, J.O. Smith III, Modeling nonlinear wave digital elements using the Lambert function. IEEE Trans. Circuits Syst. I Regul. Papers 63(8), 1231–1242 (2016)

    Article  MathSciNet  Google Scholar 

  10. A. Bernardini, K.J. Werner, J.O. Smith III, A. Sarti, Generalized wave digital filter realizations of arbitrary reciprocal connection networks. IEEE Trans. Circuits Syst. I Regul. Papers 66(2), 694–707 (2019)

    Article  MathSciNet  Google Scholar 

  11. O. Burdakov, Some globally convergent modifications of Newton’s method for solving systems of nonlinear equations. Soviet Math. Doklady 22(2), 376–378 (1980)

    MATH  Google Scholar 

  12. Cadence Design Systems Inc., 555 River Oaks Parkway, San Jose, CA 95134. (PSpice A/D Reference Guide, USA, 2004)

  13. G. Cardano, ARS Magna, or The Rules of Algebra (Dover, New York, 1993)

    MATH  Google Scholar 

  14. L. Chua, Modeling of three terminal devices: a black box approach. IEEE Trans. Circuit Theory 19(6), 555–562 (1972)

    Article  Google Scholar 

  15. S. D’Angelo, J. Pakarinen, V. Välimäki, New family of wave-digital triode models. IEEE Trans. Audio Speech Lang. Process. 21, 313–321 (2013)

    Article  Google Scholar 

  16. J. Davisson, Obsidian Overdrive. Online Blog, URL: https://www.diystompboxes.com/analogalchemy/sch/obsidian.html, 30 Sept 2018

  17. G. De Sanctis, A. Sarti, Virtual analog modeling in the wave-digital domain. IEEE Trans. Audio Speech Lang. Process. 18, 715–727 (2010)

    Article  Google Scholar 

  18. J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996)

    Book  Google Scholar 

  19. J.J. Ebers, J.L. Moll, Large-signal behavior of junction transistors. Proc. IRE 42, 1761–1772 (1954)

    Article  Google Scholar 

  20. A. Fettweis, Wave digital filters: theory and practice. Proc. IEEE 74, 270–327 (1986)

    Article  Google Scholar 

  21. A. Fettweis, K. Meerkötter, On adaptors for wave digital filters. IEEE Trans. Acoust. Speech Signal Process. 23, 516–525 (1975)

    Article  Google Scholar 

  22. D. Fränken, J. Ochs, K. Ochs, Generation of wave digital structures for connection networks containing multiport elements. IEEE Trans. Circuits Syst. I Regul. Papers 52, 586–596 (2005)

    Article  Google Scholar 

  23. D. Hernandez, J. Huang, Emulation of junction field-effect transistors for real-time audio applications. IEICE Electron. Expr. (2016). https://doi.org/10.1587/elex.13.20160288

  24. M. Karjalainen, J. Pakarinen, Wave digital simulation of a vacuum-tube amplifier, in Proceedings IEEE International Conference Acoustics, Speech, Signal Processing, Toulouse, France (2006)

  25. G.O. Martens, K. Meerkötter, On N-port adaptors for wave digital filters with application to a bridged-tee filter, in Proceedings IEEE International Symposium Circuits System, Munich, Germany (1976), pp. 514–517

  26. K. Meerkötter, R. Scholz, Digital simulation of nonlinear circuits by wave digital filter principles. IEEE Int. Symp. Circuits Syst. 1, 720–723 (1989)

    Article  Google Scholar 

  27. M.J. Olsen, K.J. Werner, J.O. Smith III, Resolving grouped nonlinearities in wave digital filters using iterative techniques, in Proceedings 19th International Conference Digital Audio Effects, Brno, Czech Republic(2016), pp. 279–286

  28. R.C.D. Paiva, S. D’Angelo, J. Pakarinen, V. Välimäki, Emulation of operational amplifiers and diodes in audio distortion circuits. IEEE Trans. Circuits Syst. II Exp. Briefs 59, 688–692 (2012)

    Article  Google Scholar 

  29. J. Pakarinen, M. Karjalainen, Enhanced wave digital triode model for real-time tube amplifier emulation. IEEE Trans. Audio Speech Lang. Process. 18, 738–746 (2010)

    Article  Google Scholar 

  30. J. Pakarinen, M. Tikander, M. Karjalainen, Wave digital modeling of the output chain of a vacuum-tube amplifier, in Proceedings International Conference Digital Audio Effects, Como, Italy (2009), pp. 153–156

  31. F. Pedersini, A. Sarti, S. Tubaro, Object-based sound synthesis for virtual environments using musical acoustics. IEEE Signal Process. Mag. 17(6), 37–51 (2000)

    Article  Google Scholar 

  32. S. Petrausch, R. Rabenstein, Wave digital filters with multiple nonlinearities, in Proceedings 12th European Signal Processing Conference Vienna, Austria (2004)

  33. A. Sarti, G. De Sanctis, Systematic methods for the implementation of nonlinear wave-digital structures. IEEE Trans. Circuits Syst. I Reg. Papers 56(2), 460–472 (2009)

    Article  MathSciNet  Google Scholar 

  34. T. Schwerdtfeger, A. Kummert, Nonlinear circuit simulation by means of Alfred Fettweis’ wave digital principles. IEEE Circuits Syst. Mag. 19(1), 55 (2019)

    Article  Google Scholar 

  35. H. Shichman, D.A. Hodges, Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid-State Circuits 3(3), 285–289 (1968)

    Article  Google Scholar 

  36. M. Verasani, A. Bernardini, A. Sarti, Modeling Sallen-Key audio filters in the wave digital domain, in Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA (2017), pp. 431–435

  37. K.J. Werner, A. Bernardini, J.O. Smith III, A. Sarti, Modeling circuits with arbitrary topologies and active linear multiports using wave digital filters. IEEE Trans. Circuits Syst. I Regul. Papers 65(12), 4233–4246 (2018)

    Article  Google Scholar 

  38. K.J. Werner, W.R. Dunkel, M. Rest, M.J. Olsen, J.O. Smith III, Wave digital filter modeling of circuits with operational amplifiers, in Proceedings 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary (2016), pp. 1033–1037

  39. K.J. Werner, V. Nangia, J.O. Smith III, J.S. Abel, Resolving wave digital filters with multiple/multiport nonlinearities, in Proceedings 18th Conference Digital Audio Effects, Trondheim, Norway (2015), pp. 387–394

  40. J. Zhang, J.O. Smith III, Real-time wave digital simulation of cascaded vacuum tube amplifiers using modified blockwise method, in Proceedings 21st Conference Digital Audio Effects, Aveiro, Portugal (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bernardini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Let us consider a \(3^{rd}\) grade equation in the canonical form

$$\begin{aligned} \xi x^3 + \delta x^2 + \nu x + \rho =0 \end{aligned}$$

where \(\xi \ne 0\) and x is the unknown variable. The 3 solutions in closed form are

$$\begin{aligned}&x_1= s + t - \frac{\delta }{3\xi } \\&x_2=-\frac{1}{2} (s+t) -\frac{\delta }{3\xi } +\frac{ \root \of {3}}{2} (s-t) j \\&x_3=-\frac{1}{2} (s+t) -\frac{\delta }{3\xi } -\frac{ \root \of {3}}{2} (s-t) j \end{aligned}$$

where j is the imaginary unit and

$$\begin{aligned}&s= \root 3 \of {\frac{r}{2}+\sqrt{\frac{q^3}{27} +\frac{r^2}{4}}},\,\,\,\,\,\,\,\,\, t= \root 3 \of {\frac{r}{2}-\sqrt{\frac{q^3}{27} +\frac{r^2}{4}}},\\&q=\frac{3\xi \nu -\delta ^2}{3\xi ^2},\,\,\,\,\,\,\,\,\, r=\frac{9\xi \delta \nu - 27\xi ^2 \rho -2\delta ^3}{27\xi ^3}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, A., Vergani, A.E. & Sarti, A. Wave Digital Modeling of Nonlinear 3-terminal Devices for Virtual Analog Applications. Circuits Syst Signal Process 39, 3289–3319 (2020). https://doi.org/10.1007/s00034-019-01331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01331-7

Keywords

Navigation