Skip to main content
Log in

Communication-Reducing Algorithm of Distributed Least Mean Square Algorithm with Neighbor-Partial Diffusion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

With the development of distributed algorithms, many researchers are committed to the goal of maintaining the long-term stability of the network by reducing the communication cost. However, many algorithms that lessen communication costs often result in a significant decrease in estimation accuracy. In order to reduce the communication cost with less performance degradation, the distributed neighbor-partial diffusion least-mean-square algorithm (NPDLMS) is proposed in this paper. Besides, considering the data redundancy in the network, we offer the distributed data selection NPDLMS algorithm, which further improves the estimation accuracy and reduces the communication cost. In the performance analysis, the stability and the communication cost of the algorithms are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Abdolee, B. Champagne, A. H. Sayed, A diffusion LMS strategy for parameter estimation in noisy regressor applications, in: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), IEEE, pp. 749753 (2012)

  2. R. Arablouei, K. Dogancay, S. Werner, Y. Huang, Adaptive distributed estimation based on recursive least-squares and partial diffusion. IEEE Trans. Signal Process. 62(14), 3510–3522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Arablouei, S. Werner, Y.F. Huang et al., Distributed least mean-square estimation with partial diffusion. IEEE Trans. Signal Process. 62(2), 472–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bertrand, M. Moonen, Consensus-based distributed total least squares estimation in ad hoc wireless sensor networks. IEEE Trans. Signal Process. 59(5), 2320–2330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bertrand, M. Moonen, Low-complexity distributed total least squares estimation in ad hoc sensor networks. IEEE Trans. Signal Process. 60(8), 4321–4333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bertrand, M. Moonen, A.H. Sayed, Diffusion bias-compensated RLS estimation over adaptive networks. IEEE Trans. Signal Process. 59(11), 5212–5224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. D.P. Bertsekas, A new class of incremental gradient methods for least squares problems. SIAM J. Optim. 7(4), 913–926 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Bogdanovic, J. Platachaves, K. Berberidis, Distributed incremental-based LMS for node-specific adaptive parameter estimation. IEEE Trans. Signal Process. 62(20), 5382–5397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Chen et al., Multi-step-length gradient iterative algorithm for equation-error type models. Syst. Control Lett. 115, 15–21 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Chen et al., Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica 94, 194–204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Chen, A.H. Sayed, Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Chen, X. Shao, Broken-motifs diffusion LMS algorithm for reducing communication load. Signal Process. 133, 213–218 (2017)

    Article  Google Scholar 

  14. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  15. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Principe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Chen, X. Li, S. Duan, L. Wang, J. Wu, Diffusion generalized maximum correntropy criterion algorithm for distributed estimation over multitask network. Digit. Signal Process. 81, 16–25 (2018)

    Article  MathSciNet  Google Scholar 

  17. F. Chen, T. Shi, S. Duan, L. Wang, J. Wu, Diffusion least logarithmic absolute difference algorithm for distributed estimation. Signal Process. 142, 423–430 (2018)

    Article  Google Scholar 

  18. S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59(10), 4692–4707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Dang et al., Kernel Kalman filtering with conditional embedding and maximum correntropy criterion. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(11), 4265–4277 (2019)

    Article  MathSciNet  Google Scholar 

  20. P.S. Diniz, On data-selective adaptive filtering. IEEE Trans. Signal Process. 66(16), 4239–4252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Hua, C. Li, H. Shen, Distributed learning of predictive structures from multiple tasks over networks. IEEE Trans. Ind. Electron. 64(5), 4246–4256 (2017)

    Article  Google Scholar 

  22. S. Huang, C. Li, Distributed sparse total least-squares over networks. IEEE Trans. Signal Process. 63(11), 2986–2998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Jiang, S. Yin, Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE Trans. Ind. Inform. 14(4), 1415–1423 (2017)

    Article  Google Scholar 

  24. Y. Jiang, S. Yin, O. Kaynak, Data-driven monitoring and safety control of industrial cyber-physical systems: basics and beyond. IEEE Access 6, 47374–47384 (2018)

    Article  Google Scholar 

  25. S. Kar, J.M. Moura, Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Trans. Signal Process. 57(1), 355–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Li, P. Shen, Y. Liu, Z. Zhang, Diffusion information theoretic learning for distributed estimation over network. IEEE Trans. Signal Process. 61(16), 4011–4024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Liang, Y. Zhang, T. Huang, H. Ma, Prescribed performance cooperative control for multiagent systems with input quantization. In: IEEE Transactions on Cybernetics (Early Access), pp. 1–10. IEEE (2019). https://doi.org/10.1109/TCYB.2019.2893645

  28. H. Liang, Z. Zhang, C.K. Ahn, Event-triggered fault detection and isolation of discrete-time systems based on geometric technique. IEEE Trans. Circuits Syst. II Express Br. 67(2), 335–339 (2019)

    Article  Google Scholar 

  29. Y. Liu, C. Li, Z. Zhang, Diffusion sparse least-mean squares over networks. IEEE Trans. Signal Process. 60(8), 4480–4485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Mateos, I.D. Schizas, G.B. Giannakis, Distributed recursive least-squares for consensus-based in-network adaptive estimation. IEEE Trans. Signal Process. 57(11), 4583–4588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Nedic, D.P. Bertsekas, Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12(1), 109–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.G. Rabbat, R.D. Nowak, Quantized incremental algorithms for distributed optimization. IEEE J. Sel. Areas Commun. 23(4), 798–808 (2005)

    Article  Google Scholar 

  34. I.D. Schizas, A. Ribeiro, G.B. Giannakis, Consensus in ad hoc wsns with noisy links<apart i: distributed estimation of deterministic signals. IEEE Trans. Signal Process. 56(1), 350–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.S. Stankovic, M.S. Stankovic, D.M. Stipanovic, Decentralized parameter estimation by consensus based stochastic approximation. IEEE Trans. Autom. Control 56(3), 531–543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans. Signal Process. 58(9), 4795–4810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Vadidpour, A. Rastegarnia, A. Khalili, S. Sanei, Partial-diffusion least mean-square estimation over networks under noisy information exchange. arXiv:1511.09044

  38. S. Wang, C. Li, Distributed robust optimization in networked system. IEEE Trans. Syst. Man Cybern. 47(8), 2321–2333 (2017)

    Google Scholar 

  39. Z. Wang, Y. Wang, Z. Ji, A novel two-stage estimation algorithm for nonlinear Hammerstein–Wiener systems from noisy input and output data. J. Frankl. Inst. 354(4), 1937–1944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Wang, Z. Tang, J.H. Park, A novel two-stage ellipsoid filtering-based system modeling algorithm for a Hammerstein nonlinear model with an unknown noise term. Nonlinear Dyn. 98, 1–7 (2019)

    Article  Google Scholar 

  41. H. Zhang et al., A new delay-compensation scheme for networked control systems in controller area networks. IEEE Trans. Ind. Electron. 65(9), 7239–7247 (2018)

    Article  Google Scholar 

  42. H. Zhang, J. Wang, Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 66(5), 3685–3702 (2016)

    Article  Google Scholar 

  43. X. Zhao, S.-Y. Tu, A.H. Sayed, Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Trans. Signal Process. 60(7), 3460–3475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukai Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Key R&D Program of China (Nos. 2018YFB1306600, 2018YFB1306604), the Fundamental Research Funds for the Central Universities (XDJK2020B034).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Deng, S., Hua, Y. et al. Communication-Reducing Algorithm of Distributed Least Mean Square Algorithm with Neighbor-Partial Diffusion. Circuits Syst Signal Process 39, 4416–4435 (2020). https://doi.org/10.1007/s00034-020-01374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01374-1

Keywords

Navigation