Skip to main content
Log in

Methodology of Noise Flatness Based on Network Quality Factor in RF Wideband Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A noise optimization method for millimeter-wave RF wideband applications is reported. Intrinsic noise laws in wideband RF systems are discovered, and a noise flatness methodology based on a network quality factor algorithm is proposed. This algorithm aims to reduce the total noise in an RF system and increase the noise flatness over a full operating band. An RF wideband front end is investigated to verify the noise optimization theory and maintain circuit performance. Using noise flatness methodology and a SiGe heterojunction bipolar transistor process featuring a fT/fmax of 240/280 GHz, the front-end results show good performance and compliance with the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Bhatia, S. Hyvonen, E. Rosenbaum, A compact, ESD-protected, SiGe BiCMOS LNA for ultra-wideband applications. IEEE J. Solid-State Circuits 42, 1121–1130 (2007)

    Article  Google Scholar 

  2. H. Chen, Y. Lin, S. Lu, Analysis and design of a 1.6–28-GHz compact wideband LNA in 90-nm CMOS using a π-match input network. IEEE Trans. Microw. Theory Tech. 58(8), 2092–2104 (2010)

    Article  Google Scholar 

  3. C. Feng, X.P. Yu, Z.H. Lu, W.M. Lim, W.Q. Sui, 3-10 GHz self-biased resistive-feedback LNA with inductive source degeneration. Electron. Lett. 49(6), 409–410 (2013)

    Article  Google Scholar 

  4. B.Q. Guo, J. Chen, H.Y. Jin, A linearized common-gate low-noise amplifier using active cross-coupled feedback technique. Analog Integr. Circ. Signal Process 89(1), 239–248 (2016)

    Article  Google Scholar 

  5. B. Guo, X. Li, A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique. IEEE Microw. Wirel. Compon. Lett. 23(11), 608–610 (2013)

    Article  Google Scholar 

  6. M. Hayati, S. Cheraghaliei, S. Zarghami, Design of UWB low noise amplifier using noise-canceling and current-reused techniques. Integr. VLSI J. 60, 232–239 (2018)

    Article  Google Scholar 

  7. K. Jing, N. Yu, X. Quan, An S- to Ku-wideband low-noise amplifier using asymmetric π filter and shunt-peaking technique with simultaneous input match and noise flatness. Microw. Opt. Technol. Lett. 61(6), 1509–1516 (2019)

    Article  Google Scholar 

  8. J. Kai, Y. Zhuang, Z. Li, Z. Zhao, L. Nie, A SiGe LC-ladder low noise amplifier with base resistance match, gain and noise flatness for UWB applications. Microelectron. J. 45(6), 648–656 (2014)

    Article  Google Scholar 

  9. A.R.A. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circuits Syst. II Express Briefs 65(7), 834–838 (2018)

    Article  Google Scholar 

  10. N. Li, W.W. Feng, X.P. Li, A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network. IEEE Microw. Wirel. Compon. Lett. 27(4), 383–385 (2017)

    Article  Google Scholar 

  11. Y.S. Lin, C.C. Chen, C.Y. Lee, 7.2 mW CMOS low-noise amplifier with 17.3 dB gain and 7.7 dB NF for 76–77 GHz long-range and 77–81 GHz short-range automotive radars. Analog Integr. Circuits Signal Process 87(1), 1–9 (2016)

    Article  Google Scholar 

  12. G. Nikandish, A. Medi, A 40-GHz bandwidth tapered distributed LNA. IEEE Trans. Circuits Syst. II Express Briefs 65(11), 1614–1618 (2018)

    Article  Google Scholar 

  13. Z. Pan, C. Qin, Z. Ye, Y. Wang, Z. Yu, Wideband inductorless low-power LNAs with gm enhancement and noise-cancellation. IEEE Trans. Circuits Syst. I Regul. Pap. 65(1), 26–38 (2018)

    Article  Google Scholar 

  14. J.-Y. Park, J.-Y. Lee, C.-K. Yeo, T.-Y. Yun, Analysis and optimization of a resistive-feedback inverter LNA. Microw. Opt. Technol. Lett. 60(5), 1143–1151 (2018)

    Article  Google Scholar 

  15. P. Qin, Q. Xue, Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microwave Wirel. Compon. Lett. 27(7), 657–659 (2017)

    Article  Google Scholar 

  16. C. Wang, 11.81 mW 3.1–10.6 GHz ultra-wideband low-noise amplifier with 2.87 ± 0.19 dB noise figure and 12.52 ± 0.81 dB gain using 0.18 mu m CMOS technology. Microw. Opt. Technol. Lett. 54(6), 1445–1450 (2012)

    Article  Google Scholar 

  17. A. Yarahmadi, A. Jannesari, Two-path inverter-based low noise amplifier for 10-12 GHz applications. Microelectron. J. 50, 76–82 (2016)

    Article  Google Scholar 

  18. H. Yu, Y. Chen, C.C. Boon, C. Li, P.-I. Mak, R.P. Martins, A 0.044-mm2 0.5-To-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3 ± 0.45 dB. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 71–75 (2019)

    Article  Google Scholar 

  19. X.P. Yu, W.L. Xu, C. Feng, Z.H. Lu, W.M. Lim, K.S. Yeo, A 11.2 mW 48–62 GHz low noise amplifier in 65 nm CMOS technology. Circuits Syst. Signal Process. 35(5), 1531–1543 (2016)

    Article  Google Scholar 

  20. S. Zeinolabedinzadeh, A.C. Ulusoy, M.A. Oakley, N.E. Lourenco, J.D. Cressler, A 0.3–15 GHz SiGe LNA with 1 THz gain-bandwidth product. IEEE Microw. Wirel. Compon. Lett. 27(4), 380–382 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation (61771388), the Xi’an Science and Technology Program (2019217814GXRC014CG015-GXYD14.3, 201805037YD15CG 21(11)), the XAUT Education Reform Project (252041911, 251031903), and the Scientific Research Project of Shaanxi Education Department (19JC029) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, K., Yu, N., Wang, X. et al. Methodology of Noise Flatness Based on Network Quality Factor in RF Wideband Applications. Circuits Syst Signal Process 39, 4499–4515 (2020). https://doi.org/10.1007/s00034-020-01380-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01380-3

Keywords

Navigation