Skip to main content
Log in

Novel Optimum Parity-Preserving Reversible Multiplier Circuits

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Reversible logic is considered as a basic requirement for designing quantum computers. Reversible circuits do not waste energy. The use of this logic in low-power complementary metal–oxide–semiconductor circuits, quantum computing, and DNA computing has rendered reversible logic integral in today’s technology. Multiplication is regarded as a major operation in the arithmetic. Herein, four optimized parity-preserving reversible signed and unsigned multiplier circuits are presented to reduce the QUANTUM COST of the circuits. The designs can be expanded to an N × N dimension. We prove that these multiplier circuits have lower QUANTUM COST, CONSTANT INPUTs, and GARBAGE OUTPUTs compared with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.M.H. Babu, Cost-efficient design of a quantum multiplier–accumulator unit. Quantum Inf. Process. 16(1), 30 (2016). https://doi.org/10.1007/s11128-016-1455-0

    Article  MATH  Google Scholar 

  2. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  3. K. Bhardwaj, M. Deshpande, K-Algorithm: an improved Booth’s recoding for optimal fault tolerant reversible multiplier, in 26th International Conference on VLSI Design (2013), pp. 362–367

  4. X.-D. Cai, D. Wu, Z.-E. Su, M.-C. Chen, X.-L. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114(11), 110504 (2015)

    Article  Google Scholar 

  5. R. Feynman, Quantum mechanical computers. Opt. News 11, 11–20 (1985)

    Article  Google Scholar 

  6. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  7. M. Haghparast, Design and implementation of nanometric fault tolerant reversible BCD adder. Aust. J. Basic Appl. Sci. 5(10), 896–901 (2011)

    Google Scholar 

  8. M. Haghparast, M. Mohammadi, K. Navi, M. Eshghi, Optimized reversible multiplier circuit. J. Circuits Syst. Comput. 18(2), 311–323 (2009)

    Article  Google Scholar 

  9. A.P. Hatkar, A.A. Hatkar, N.P. Narkhede, ASIC design of reversible multiplier circuit, in Proceedings of International Conference on Electronic Systems, Signal Processing and Computing Technologies (2014), pp. 47–52

  10. M.S. Islam, M.M. Rahman, Z. Begum, M.Z. Hafiz, Fault tolerant reversible logic synthesis: carry look-ahead and carry skip adders, in International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (2009), pp. 396–401

  11. L. Jamal, M.M. Rahman, H.M.H. Babu, An optimal design of a fault tolerant reversible multiplier, in IEEE 26th International SOC Conference (SOCC) (2013), pp. 37–42

  12. M.V. Jigalur, M.S. Meharunnis, Efficient reversible multiplier using column bypass technique for DSP applications. Int. J. Eng. Res. Gen. Sci. 3(1), 91–97 (2015)

    Google Scholar 

  13. S. Kotiyal, H. Thapliyal, N. Ranganathan, Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput. 71, 2668–2693 (2015)

    Article  Google Scholar 

  14. S. Kotiyal, H. Thapliyal, N. Ranganathan, Circuit for reversible quantum multiplier based on binary tree optimizing Ancilla and Garbage bits, in Proceedings of 27th International Conference on VLSI Design (VLSID) (2014), pp. 545–550

  15. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  16. C.C. Lin, A. Chakrabarti, N.K. Jha, QLib: quantum module library. J. Emerg. Technol. Comput. Syst. 11(1), 7:1–7:20 (2014). https://doi.org/10.1145/2629430

    Article  Google Scholar 

  17. D. Maslov, G.W. Dueck, Reversible cascades with minimal garbage. IEEE Trans. CAD Integr. Circuits Syst. 23(11), 1497–1509 (2004)

    Article  Google Scholar 

  18. M.Z. Moghadam, K. Navi, Ultra-area-efficient reversible multiplier. Microelectron. J. 43, 377–385 (2012)

    Article  Google Scholar 

  19. Z.M. Moghadam, K. Navi, M. Kalemati, A novel reversible design for double edge triggered flip-flops and new designs of reversible sequential circuits. Int. J. Comput. Syst. Sci. Eng. 29, 197–204 (2014)

    Google Scholar 

  20. V.G. Moshnyaga, Design of minimum complexity reversible multiplier, in Proceedings of IEEE Region 10 Conference (TENCON) (2015), pp. 1–4

  21. C.E. Muñoz, H. Thapliyal, Quantum circuit design of a T-count optimized integer multiplier. IEEE Trans. Comput. 68(5), 729–739 (2019). https://doi.org/10.1109/tc.2018.2882774

    Article  MathSciNet  MATH  Google Scholar 

  22. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  23. B. Parhami, Fault tolerant reversible circuits, in Proceedings 40th Asilomar Conference Signals, Systems, and Computers, Pacific Grove, CA (2006)

  24. B. Parhami, Computer Arithmetic—Algorithm and Hardware Designs (Oxford University Press, Oxford, 2000)

    Google Scholar 

  25. A. Peres, Reversible logic and quantum computers. Phys. Rev. 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  26. L.R. Perez, J.C.G. Escartin, Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017). https://doi.org/10.1007/s11128-017-1603-1

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, et al., A general decomposition for reversible logic, in Proceedings of RM (2001), pp. 119–38

  28. E. PourAliAkbar, M. Haghparast, K. Navi, Novel design of a fast reversible Wallace sign multiplier circuit in nanotechnology. Microelectron. J. 42, 973–981 (2011)

    Article  Google Scholar 

  29. E. PourAliAkbar, M. Mosleh, An efficient design for reversible wallace unsigned multiplier. Theor. Comput. Sci. 773, 43–52 (2018)

    Article  MathSciNet  Google Scholar 

  30. N. Przigoda, G. Dueck, R. Wille, R. Drechsler, Fault detection in parity preserving reversible circuit, in 2016 IEEE 46th International Symposium on Multiple-Valued Logic (2016)

  31. X. Qi, F. Chen, Design of fast fault tolerant reversible signed multiplier. Int. J. Phys. Sci. 7(17), 2506–2514 (2012)

    Google Scholar 

  32. H. Thapliyal, M.B. Srinivas, Novel reversible multiplier architecture using reversible TSG gate, in Proceedings of the IEEE International Conference on Computer Systems and Applications (2006), pp. 100–103

  33. H. Thapliyal, M.B. Srinivas, Novel reversible TSG gate and its application for designing reversible carry look ahead adder and other adder architectures, in Proceedings of the 10th Asia-Pacific Computer Systems Architecture Conference (ACSAC 05). Lecture Notes of Computer Science 3740 (Springer, 2005), pp. 775–786

  34. T. Toffoli, Reversible computing. Technical memo MIT/LCS/TM-151, MIT Lab. for Computer Science (1980)

  35. M. Valinataj, Novel parity-preserving reversible logic array multipliers. J. Supercomput. 73, 4843–4867 (2017)

    Article  Google Scholar 

  36. R. Zhou, Y. Shi, H. Wanga, J. Cao, Transistor realization of reversible “ZS” series gates and reversible array multiplier. Microelectron. J. 42, 305–315 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Nader Bagherzadeh, Eng. Elika Navi, and Eng. Pegah Foroutan for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PourAliAkbar, E., Navi, K., Haghparast, M. et al. Novel Optimum Parity-Preserving Reversible Multiplier Circuits. Circuits Syst Signal Process 39, 5148–5168 (2020). https://doi.org/10.1007/s00034-020-01406-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01406-w

Keywords

Navigation