Skip to main content
Log in

Design of High Linearity Inductor-Less Active CMOS Mixer Based on Volterra Series Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In the present paper, a linearization technique is proposed for double-balanced active inductor-less mixer based on the interaction of two nonlinear approaches. The proposed procedure utilizes multiple-gate and second harmonic injection techniques in order to simultaneously enhance the third-order intercept point (IIP3) and second-order intercept point (IIP2). The full Volterra series analysis of transconductance stage of the proposed mixer is presented to demonstrate the effective technique in detail. Simulations are performed utilizing a TSMC \(0.18\, \upmu \hbox {m}\) CMOS technology. Compared with the conventional Gilbert cell mixer, the simulations suggest improvements of 18.6 dBm and 54 dBm in IIP3 and IIP2 of the proposed mixer, respectively. The mixer has a conversion gain of 20.3 dB while 3.21 mA is drawn from a 1.8 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Asghari, M. Yavari, Using interaction between two nonlinear systems to improve IIP3 in active mixers. Electron. Lett. 50(2), 76–77 (2014)

    Article  Google Scholar 

  2. M. Asghari, M. Yavari, Using the gate–bulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(1), 223–232 (2016)

    Article  Google Scholar 

  3. F. Belmas, F. Hameau, J.-M. Fournier, A low power inductorless LNA with double Gm enhancement in 130 nm CMOS. IEEE J. Solid- State Circuits 47(5), 1094–1103 (2012)

    Article  Google Scholar 

  4. J. Cárdenas, J. Galaviz-Aguilar, J. Perez, A. Tellez, Modeling memory effects in RF power amplifiers applied to a digital pre-distortion algorithm and emulated on a DSP-FPGA board. Integr. VLSI J. 49(1), 49–64 (2015)

    Google Scholar 

  5. P.G. Drennan, C.C. McAndrew, Understanding MOSFET mismatch for analog design. IEEE J. Solid-State Circuits 38(3), 450–456 (2003)

    Article  Google Scholar 

  6. K. Dufrene, Z. Boos, R. Weigel, Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers. IEEE J. Solid-State Circuits 43(11), 2434–2445 (2008)

    Article  Google Scholar 

  7. I. Elahi, K. Muhammad, P.T. Balsara, IIP2 and DC offsets in the presence of leakage at LO frequency. IEEE Trans. Circuits Syst. II Exp. Briefs 53(8), 647–651 (2006)

    Article  Google Scholar 

  8. M. El-Nozahi, A.A. Helmy, E. Sanchez-Sinencio, K. Entesari, An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology. IEEE J. Solid- State Circuits 46(5), 1111–1122 (2011)

    Article  Google Scholar 

  9. R. Harjani, L. Cai, Inductorless design of wireless CMOS frontends, in IEEE ASICON (2007), pp. 1367–1370

  10. T.H. Jin, T.W. Kim, A 6.75 mW +12.45 dBm IIP3 1.76 dB NF 0.9 GHz CMOS LNA employing multiple gated transistors with bulk bias control. IEEE Microw. Wirel. Compon. Lett 21(11), 616–618 (2011)

    Article  Google Scholar 

  11. S. Lou, H.C. Luong, A linearization technique for RF receiver front-end using second-order-intermodulation injection. IEEE J. Solid-State Circuit 43(11), 2404–2412 (2008)

    Article  Google Scholar 

  12. L. Ma, Z. Wang, J. Xu, A1-V current-reused wideband current-mirror mixer in 180-nm CMOS with high IIP2. Circuits Syst. Signal Process. 36(5), 1806–1817 (2017)

    Article  Google Scholar 

  13. D. Manstretta, M. Brandolini, F. Svelto, Second-order inter-modulation mechanisms in CMOS downconverters. IEEE J. Solid-State Circuits 38(3), 394–406 (2003)

    Article  Google Scholar 

  14. M. Mollaalipour, H. Miar-Naimi, An improved high linearity active CMOS mixer: design and Volterra series analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 60(8), 2092–2103 (2013)

    Article  MathSciNet  Google Scholar 

  15. B. Razavi, RF Microelectronics (Prentice-Hall PTR, Upper Saddle River, NJ, 1998)

    Google Scholar 

  16. D.D. Silveira, P.L. Gilabert, A.B. Santos, M. Gadringer, Analysis of variations of volterra series models for RF power amplifiers. IEEE MWCL 23(1), 442–44 (2013)

    Google Scholar 

  17. M.B. Vahidfar, O. Shoaei, A high IIP2 mixer enhanced by a new calibration technique for zero-If receivers. IEEE Trans. Circuits Syst. II Exp. Briefs 55(3), 219–223 (2008)

    Article  Google Scholar 

  18. P. Wambacq, W.M. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer, Norwell, MA, 1998)

    Book  Google Scholar 

  19. Q. Wan, D. Xu, H. Zho, J. Dong, A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst. Signal Process. 37(9), 3671–3684 (2018)

    Article  Google Scholar 

  20. T. Wook Kim, B. Kim, K. Lee, Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated. IEEE J. Solid-State Circuits 39(1), 223–229 (2004)

    Article  Google Scholar 

  21. X.Y.Z. Xiong, L.J. Jiang, J.E. Schutt-Aine, W.C. Chew, Volterra series-based time-domain macromodeling of nonlinear circuits. IEEE Trans. Compon. Packag. Manuf. Technol. 7(1), 39–49 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 A: Expanded Equation in Multiple-Gate Transistors

The drain current of M1 and M2 in Fig. 2 can be expressed as:

$$\begin{aligned} I_{\mathrm{D}1}= & {} \frac{1}{2}\mu _{0}C_{\mathrm{ox}}\frac{W_{1}}{L_{1}}\frac{\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2}{1 + \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{1}} + \theta \Big ) + \big ((V_{\mathrm{GS}1} + v_{\mathrm{in}}) - V_{\mathrm{th}}\big )} \end{aligned}$$
(29)
$$\begin{aligned} I_{\mathrm{D}2}= & {} \frac{1}{2}\mu _{0}C_{\mathrm{ox}}\frac{W_{2}}{L_{2}}\frac{\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2}{1 + \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{2}} + \theta \Big ) + \big ((V_{\mathrm{GS}2} + v_{\mathrm{in}}) - V_{\mathrm{th}}\big )} \end{aligned}$$
(30)

where \(\mu _{0}\) denotes the zero-field mobility and \(V_{\mathrm{sat}}\) and \(\theta \) are the saturation velocity of carrier and the effect of the vertical field, respectively. If the second term in the denominator remains much less than unity, it is possible to rewrite Eqs. (29) and (30) as, respectively, Eqs. (31) and (32) using the approximation: \((1+\varepsilon )^{-1} \approx 1 - \varepsilon + \varepsilon ^2\) [1]

$$\begin{aligned} I_{\mathrm{D}1}= & {} \frac{1}{2}\mu _{0}C_{ox}\frac{W_{1}}{L_{1}}\Bigg [\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2 \nonumber \\&-\, \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{1}} + \theta \Big )\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^3 \nonumber \\&+\, \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{1}} + \theta \Big )\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^4\Bigg ] \end{aligned}$$
(31)
$$\begin{aligned} I_{\mathrm{D}2}= & {} \frac{1}{2}\mu _{0}C_{\mathrm{ox}}\frac{W_{2}}{L_{2}}\Bigg [\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2 \nonumber \\&-\, \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{2}} + \theta \Big )\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big ) ^3 \nonumber \\&+\, \Big (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{2}} + \theta \Big )\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^4\Bigg ] \end{aligned}$$
(32)

For simplicity, Eqs. (31) and (32) can be rewritten as Eqs. (33) and (34), respectively:

$$\begin{aligned} I_{\mathrm{D}1}= & {} k_{1}\Bigg [\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2 \nonumber \\&- \,a_{1}\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^3 \nonumber \\&+ \,a_{1}\big ((V_{\mathrm{GS}1} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^4\Bigg ] \end{aligned}$$
(33)
$$\begin{aligned} I_{\mathrm{D}2}= & {} k_{2}\Bigg [\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^2 \nonumber \\&-\, a_{2}\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^3 \nonumber \\&+\, a_{2}\big ((V_{\mathrm{GS}2} + v_{\mathrm{in}})- V_{\mathrm{th}}\big )^4\Bigg ] \end{aligned}$$
(34)

where \(k_{1}=\frac{1}{2}\mu _{0}C_{\mathrm{ox}}\frac{W_{1}}{L_{1}}\), \(k_{2}=\frac{1}{2}\mu _{0}C_{\mathrm{ox}}\frac{W_{2}}{L_{2}}\), \( a_{1}=(\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{1}} + \theta )\) and \(a_{2}= (\frac{\mu _{0}}{2V_{\mathrm{sat}}L_{2}} + \theta )\). Now, by applying KCL at the drains of transistors, one obtains:

$$\begin{aligned} I_{\mathrm{D}} = I_{\mathrm{D}1} + I_{\mathrm{D}2} \end{aligned}$$
(35)

By summing \( I_{\mathrm{D}1}\) and \(I_{\mathrm{D}2}\), and classification of \(I_{\mathrm{D}}\), the coefficients A1, A2, and A3 can be given as follows as well as what is shown in Eqs. (5)–(7) in Sect. 3.

$$\begin{aligned} I_{\mathrm{D}}= & {} I_{\mathrm{DC}} + v_{\mathrm{in}}\Bigg [2k_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}}) - 3k_{1}a_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}})^2 \nonumber \\&+\, 4k_{1}a_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}})^3 + 2k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}}) \nonumber \\&-\, 3k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}})^2 + 4k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}})^3\Bigg ] \nonumber \\&+\, v_{\mathrm{in}}^2\Bigg [k_{1} - 3k_{1}a_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}}) + 6k_{1}a_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}})^2 \nonumber \\&+\, k_{2} - 3k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}}) + 6k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}})^2\Bigg ] \nonumber \\&+\, v_{\mathrm{in}}^3\Bigg [-k_{1}a_{1} + 4k_{1}a_{1}(V_{\mathrm{GS}1} - V_{\mathrm{th}}) \nonumber \\&-\, k_{2}a_{2} + 4k_{2}a_{2}(V_{\mathrm{GS}2} - V_{\mathrm{th}})\Bigg ] \end{aligned}$$
(36)

1.2 B: Expanded Volterra Series Analysis of Transconductance Stage

The drain current of \(M_{1b}\) and \(M_{2b}\) in Fig. 3 can be expressed as:

$$\begin{aligned} I_{\mathrm{D}_{1b}}= & {} g_{\mathrm{m}_{1b}}\big (0 - v_{\mathrm{in}}\big ) + g_{\mathrm{m}_{1b}}^{'}\big (0 - v_{\mathrm{in}}\big )^2 + g_{\mathrm{m}_{1b}}^{''}\big (0 - v_{\mathrm{in}}\big )^3 \end{aligned}$$
(37)
$$\begin{aligned} I_{\mathrm{D}_{2b}}= & {} g_{\mathrm{m}_{2b}}\big (0 - (-v_{\mathrm{in}})\big ) + g_{\mathrm{m}_{2b}}^{'}\big (0 - (-v_{\mathrm{in}})\big )^2 \nonumber \\&+\, g_{\mathrm{m}_{2b}}^{''}\big (0 - (-v_{\mathrm{in}})\big )^3 \end{aligned}$$
(38)

Now, by assuming \(g_{\mathrm{m}_{1b}} = g_{\mathrm{m}_{2b}}\), \(g_{\mathrm{m}_{1b}}^{'} = g_{\mathrm{m}_{2b}}^{'}\), and \(g_{\mathrm{m}_{1b}}^{''} = g_{\mathrm{m}_{2b}}^{''}\), and applying KCL at the drain node of transistors, \( I_{\mathrm{Dt}}\) (as shown in Fig. 3) can be obtained as:

$$\begin{aligned} I_{\mathrm{Dt}} = I_{\mathrm{D}_{1b}} + I_{\mathrm{D}_{2b}} = 2g_{\mathrm{m}_{1b(2b)}}v_{\mathrm{in}}^2 \end{aligned}$$
(39)

Now, by injecting \(I_{\mathrm{Dt}}\) current into the RLC network, \(V_{\mathrm{D}}\) is obtained as:

$$\begin{aligned} V_{\mathrm{D}} = I_{\mathrm{D}} \times Z_{\mathrm{D}} \end{aligned}$$
(40)

where \(Z_{\mathrm{D}} = R_{\mathrm{D}} \parallel j\omega L_{\mathrm{D}} \parallel \frac{1}{j\omega C_{\mathrm{D}}}\), thus:

$$\begin{aligned} V_{\mathrm{D}} = \frac{2g_{\mathrm{m}_{1b}}^{'} \times j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}}R_{\mathrm{D}}}{R_{\mathrm{D}} + j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}} - (\pm \omega _{1} \mp \omega _{2})^2R_{\mathrm{D}}L_{\mathrm{D}}C_{\mathrm{D}}} \times v_{\mathrm{in}}^2 \end{aligned}$$
(41)

The voltage at the output node of subsystem B is related to the input voltage signal. Accordingly, it can be expressed based on Volterra series as follows:

$$\begin{aligned} V_{\mathrm{out}} = B_{1}v_{\mathrm{in}} + B_{2}v_{\mathrm{in}}^{2} + B_{3}v_{\mathrm{in}}^{3} \end{aligned}$$
(42)

where \(B_{1}\), \(B_{2}\), and \(B_{3}\) are Volterra kernels of \(V_{\mathrm{out}}\). The goal is to obtain \(B_{1}\), \(B_{2}\), and \(B_{3}\). Hence by applying KCL at the output node (\(I_{3} = I_{1} - I_{2}\)), these currents can be obtained as:

$$\begin{aligned} I_{1}= & {} g_{\mathrm{m}_{3b}}\big (0 - v_{\mathrm{in}}\big ) + g_{\mathrm{m}_{3b}}^{'}\big (0 - v_{\mathrm{in}}\big )^2 + g_{\mathrm{m}_{3b}}^{''}\big (0 - v_{\mathrm{in}}\big )^3 \end{aligned}$$
(43)
$$\begin{aligned} I_{2}= & {} g_{\mathrm{m}_{5b}} \times V_{\mathrm{D}} \nonumber \\= & {} \frac{ g_{\mathrm{m}_{5b}} \times 2g_{\mathrm{m}_{1b}}^{'} \times j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}}R_{\mathrm{D}}}{R_{\mathrm{D}} + j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}} - (\pm \omega _{1} \mp \omega _{2})^2R_{\mathrm{D}}L_{\mathrm{D}}C_{\mathrm{D}}} \times v_{\mathrm{in}}^2 \end{aligned}$$
(44)
$$\begin{aligned} I_{3}= & {} \frac{V_{\mathrm{out}}}{Z_{\mathrm{L}}} \end{aligned}$$
(45)

where \(Z_{\mathrm{L}} = R_{\mathrm{out}} \parallel \frac{1}{j\omega C_{\mathrm{P}}}\) and \(R_{\mathrm{out}} = r_{\mathrm{o}_{3b}} \parallel r_{\mathrm{o}_{5b}}\). Substituting of (43)–(45) in \(I_{3} = I_{1} - I_{2}\) and grouping the variables, the coefficients of \(v_{\mathrm{in}}\), \(v_{\mathrm{in}}^{2}\), and \(v_{\mathrm{in}}^{3}\), i.e., \(B_{1}\), \(B_{2}\), and \(B_{3}\), can be expressed according to Eqs. (15)–(17).

The output current of subsystem A is related to the input voltage signal. Thus, it can be expressed based on Volterra series as follows:

$$\begin{aligned} I_{\mathrm{out}} = H_{1}v_{\mathrm{in}} + H_{2}v_{\mathrm{in}}^2 + H_{3}v_{\mathrm{in}}^3 \end{aligned}$$
(46)

where \(H_{1}\), \(H_{2}\), and \(H_{3}\) are Volterra kernels of output current. \(I_{\mathrm{out}}\) can be obtained as:

$$\begin{aligned} I_{\mathrm{out}} = A_{1}v_{\mathrm{out}} + A_{2}v_{\mathrm{out}}^2 + A_{3}v_{\mathrm{out}}^3 \end{aligned}$$
(47)

Now, by substituting Eq. (42) in (47) as well as using Eqs. (15)–(17), and (5)–(7) instead of \(A_{1}\), \(A_{2}\), and \(A_{3}\), Eq. (47) can be rewritten as:

$$\begin{aligned} \begin{aligned} I_{\mathrm{out}} =&g_{\mathrm{m}_{T1}}(B_{1}v_{\mathrm{in}} + B_{2}v_{\mathrm{in}}^2 + B_{3}v_{\mathrm{in}}^3) \\&+ \,g_{\mathrm{m}_{T1}}^{'}(B_{1}v_{\mathrm{in}} + B_{2}v_{\mathrm{in}}^2 + B_{3}v_{\mathrm{in}}^3)^2 \\&+ \,g_{\mathrm{m}_{T1}}^{''}(B_{1}v_{\mathrm{in}} + B_{2}v_{\mathrm{in}}^2 + B_{3}v_{\mathrm{in}}^3)^3 \end{aligned} \end{aligned}$$
(48)

Now, all Volterra kernels obtained in Eqs. (5)–(7) and (15)–(17) should be substituted into Eq. (48) in order to achieve Volterra kernels of the output current, as given in Eqs. (19)–(21).

\(M_{1c}-M_{4c}\) are added to the circuit to enhance IIP2.These transistors affect \(H_{2}\) (second coefficient of Volterra kernels of \(I_{\mathrm{out}}\)). Figure 4 shows these added transistors. \(I_{\mathrm{out}}^{'}\) can be expressed as:

$$\begin{aligned} \begin{aligned} V_{\mathrm{D}}^{'}&= -g_{\mathrm{m}_{1c}} \times V_{\mathrm{D}} \times \frac{R_{\mathrm{C}}}{1 + j(\pm \omega _{1} \mp \omega _{2}) C_{p2}R_{\mathrm{C}}} \\&= \frac{ g_{\mathrm{m}_{1c}} \times 2g_{\mathrm{m}_{1b}}^{'} \times j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}}R_{\mathrm{D}}}{R_{\mathrm{D}} + j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}} - (\pm \omega _{1} \mp \omega _{2})^2R_{\mathrm{D}}L_{\mathrm{D}}C_{\mathrm{D}}} \\&\quad \times \, \frac{R_{\mathrm{C}}}{1 + j(\pm \omega _{1} \mp \omega _{2}) C_{p2}R_{\mathrm{C}}} v_{\mathrm{in}}^2 \end{aligned} \end{aligned}$$
(49)

where \(C_{p2}\) is the total parasitic capacitance of the drain and gate of \( M_{1c}\) and \( M_{3c}\). Thus, \(I_{\mathrm{out}}^{'}\) can be expressed as:

$$\begin{aligned} \begin{aligned} I_{\mathrm{out}}^{'}&= -g_{\mathrm{m}_{3c}} \times V_{\mathrm{D}}^{'} \\&= \frac{-g_{\mathrm{m}_{3c}} g_{\mathrm{m}_{1c}} \times 2g_{\mathrm{m}_{1b}}^{'} \times j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}}R_{\mathrm{D}}}{R_{\mathrm{D}} + j(\pm \omega _{1} \mp \omega _{2})L_{\mathrm{D}} - (\pm \omega _{1} \mp \omega _{2})^2R_{\mathrm{D}}L_{\mathrm{D}}C_{\mathrm{D}}} \\&\quad \times \,\frac{R_{\mathrm{C}}}{1 + j(\pm \omega _{1} \mp \omega _{2}) C_{p2}R_{\mathrm{C}}} v_{\mathrm{in}}^2 \end{aligned} \end{aligned}$$
(50)

By applying KCL at the output node of subsystem B, the total current of transconductance stage is obtained by summing \(I_{\mathrm{out}}\) and \(I_{\mathrm{out}}^{'}\) as in:

$$\begin{aligned} I_{\mathrm{out}_{\mathrm{total}}} = I_{\mathrm{out}} + I_{\mathrm{out}}^{'} \end{aligned}$$
(51)

Substituting Eqs. (48) and (50) in equation (51), Volterra kernels of total current can be obtained. As seen, \(H_{1}\) and \(H_{3}\) do not change but \(H_{2}\) changes as shown in Eq. (25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataei Siah Bidi, A., Karimi, G. Design of High Linearity Inductor-Less Active CMOS Mixer Based on Volterra Series Analysis. Circuits Syst Signal Process 39, 4810–4828 (2020). https://doi.org/10.1007/s00034-020-01407-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01407-9

Keywords

Navigation