Skip to main content
Log in

A Neurodynamic Algorithm for Sparse Signal Reconstruction with Finite-Time Convergence

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a neurodynamic algorithm with finite-time convergence to solve \({L_{\mathrm{{1}}}}\)-minimization problem is proposed for sparse signal reconstruction which is based on projection neural network (PNN). Compared with the existing PNN, the proposed algorithm is combined with the sliding mode technique in control theory. Under certain conditions, the stability of the proposed algorithm in the sense of Lyapunov is analyzed and discussed, and then the finite-time convergence of the proposed algorithm is proved and the setting time bound is given. Finally, simulation results on a numerical example and a contrast experiment show the effectiveness and superiority of our proposed neurodynamic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Akl, C. Feng, S. Valaee, A novel accelerometer-based gesture recognition system. IEEE Trans. Signal Process. 59(12), 6197–6205 (2011)

    Article  MathSciNet  Google Scholar 

  2. M.V. Afonso, J.M. Bioucas-Dias, M.A.T. Figueiredo, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems (IEEE Press, Piscataway, 2011)

    Book  Google Scholar 

  3. R.H. Byrd, M.E. Hribar, J. Nocedal, An interior point algorithm for large scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MathSciNet  Google Scholar 

  4. S. Becker, J. Bobin, J. Emmanuel, Candes, NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2009)

    Article  MathSciNet  Google Scholar 

  5. W. Bian, X. Xue, Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans. Neural Netw. 20(6), 1024 (2009)

    Article  Google Scholar 

  6. A. Balavoine, J. Romberg, C.J. Rozell, Convergence and rate analysis of neural networks for sparse approximation. IEEE Trans. Neural Netw. Learn. Syst. 25(8), 1595–1596 (2017)

    Article  Google Scholar 

  7. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1999)

    MATH  Google Scholar 

  8. E.J. Candes, J. Romberg, T. Tao, Robust Uncertainty Principles: Exact Signal Ueconstruction from Highly Incomplete Frequency Information (IEEE Press, Piscataway, 2006)

    MATH  Google Scholar 

  9. A. Cichocki, R. Unbehauen, Neural Networks for Optimization and Signal Processing (Wiley, New York, 1993)

    MATH  Google Scholar 

  10. A. Cichocki, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, New York, 2002)

    Book  Google Scholar 

  11. E. Candes, T. Tao, The Dantzig selector: statistical estimation when \(p\) is much larger than \(n\). Ann. Stat. 35, 2313–2351 (2007)

    Article  MathSciNet  Google Scholar 

  12. J.E. Candes, The restricted isometry property and its implications for compressed sensing. Comptes rendus - Mathematique 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  13. E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  14. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008)

    Article  Google Scholar 

  15. M. Forti, P. Nistri, M. Quincampoix, Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(9), 1741–1754 (2004)

    Article  MathSciNet  Google Scholar 

  16. J.J. Hopfield, Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986)

    Article  Google Scholar 

  17. X. Hu, J. Wang, Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. A Publ. IEEE Syst. Man Cybern. Soc. 37(5), 1414 (2007)

    Article  Google Scholar 

  18. M.A. Khajehnejad, W. Xu, A.S. Avestimehr et al., Analyzing weighted \(\ell \)1 minimization for sparse recovery with nonuniform sparse models. IEEE Trans. Signal Process. 59(5), 1985–2001 (2011)

    Article  MathSciNet  Google Scholar 

  19. M.A. Khajehnejad, W. Xu, A.S. Avestimehr et al., Analyzing weighted \(\ell \)1 minimization for sparse recovery with nonuniform sparse models. IEEE Trans. Signal Process. 59(5), 1985–2001 (2011)

    Article  MathSciNet  Google Scholar 

  20. M.P. Kennedy, L.O. Chua, Neural networks for nonlinear programming. IEEE Trans. Circuits Syst. 35(5), 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  21. Y. Li, A. Cichocki, S.I. Amari, Analysis of sparse representation and blind source separation. Neural Comput. 16(6), 1193–1234 (2004)

    Article  Google Scholar 

  22. Y. Li, A. Cichocki, S.I. Amari, Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach. IEEE Trans. Neural Netw. 17(2), 419–431 (2006)

    Article  Google Scholar 

  23. P. Lin, W. Ren, Y. Song, J.A. Farrell, Distributed optimization with the consideration of adaptivity and finite-time convergence, in American Control Conference (2014), pp. 3177–3182

  24. Q. Liu, J. Wang, A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints. IEEE Trans. Neural Netw. Learn. Syst. 24(5), 812–824 (2013)

    Article  Google Scholar 

  25. Q. Liu, J. Wang, A one-layer recurrent neural network for constrained nonsmooth optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(5), 1323–1333 (2011)

    Article  Google Scholar 

  26. Q. Liu, J. Wang, \({L_1}\)-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 698–707 (2017)

    Article  Google Scholar 

  27. J. LaSalle, An invariance principle in the theory of stability, in Differential Equations and Dynamical Systems Stability and Control, New York, NY, USA: Academic, 1967, pp. 277–286

  28. J. Mairal , F. Bach, J. Ponce, et al., Non-local sparse models for image restoration, IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009. IEEE (2009)

  29. D.M. Malioutov , M. Cetin , A.S. Willsky, Homotopy continuation for sparse signal representation, in IEEE International Conference on Acoustics (2005)

  30. B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  31. P. Nagesh, B. Li, A compressive sensing approach for expression-invariant face recognition, in IEEE Conference on Computer Vision & Pattern Recognition, IEEE (2015)

  32. X. Pan, Z. Liu, Z. Chen, Distributed optimization with finite-time convergence via discontinuous dynamics, in Chinese Control Conference (CCC) (2018), pp. 6665–6669

  33. J. Palacios, C. Sagues, E. Montijano, S. Llorente, Human–computer interaction based on hand gestures using RGB-D sensors. Sensors 13(9), 11842–11860 (2013)

    Article  Google Scholar 

  34. W. Su, S. Boyd, E. Candes, A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights, in Proceedings of the Advances in Neural Information Processing Systems (2014), pp. 2510–2518

  35. A. Wagner, J. Wright, A. Ganesh et al., Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 372–386 (2012)

    Article  Google Scholar 

  36. J. Wang , J. Yang , Y. Kai, et al., Locality-constrained linear coding for image classification, in Computer Vision & Pattern Recognition, CVPR 2010, San Francisco, CA (2010)

  37. A. Wagner, J. Wright, A. Ganesh et al., Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 372 (2012)

    Article  Google Scholar 

  38. Y. Wang, G. Zhou, L. Caccetta et al., An alternative lagrange-dual based algorithm for sparse signal reconstruction. IEEE Trans. Signal Process. 59(4), 1895–1901 (2011)

    Article  Google Scholar 

  39. J. Wang, Analysis and design of a recurrent neural network for linear programming. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 40(9), 613–618 (1993)

    Article  Google Scholar 

  40. Y. Xia, J. Wang, A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15(2), 318–328 (2004)

    Article  Google Scholar 

  41. Y. Xia, J. Wang, A one-layer recurrent neural network for support vector machine learning. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(2), 1261–1269 (2004)

    Article  Google Scholar 

  42. Y. Xia, M.S. Kamel, Novel cooperative neural fusion algorithms for image restoration and image fusion. IEEE Trans. Image Process. 16(2), 367–381 (2007)

    Article  MathSciNet  Google Scholar 

  43. L. Yu, G. Zheng, J.P. Barbot, Dynamical sparse recovery with finite-time convergence. IEEE Trans. Signal Process. 65(23), 6146–6157 (2017)

    Article  MathSciNet  Google Scholar 

  44. L. Yu, J. Huang, S. Fei, Robust switching control of the direct-drive servo control systems based on disturbance observer for switching gain reduction. IEEE Trans. Circuits Syst. II Express Briefs 66(8), 1366–1370 (2019)

    Article  Google Scholar 

  45. L. Yu, C. Li, S. Fei, Any-wall touch control system with switching filter based on 3-D sensor. IEEE Sens. J. 18(11), 4697–4703 (2018)

    Article  Google Scholar 

  46. L. Yu, S. Fei, Large-screen interactive technology with 3D sensor based on clustering filtering method and unscented Kalman filter. IEEE Access 8, 8675–8680 (2020)

    Article  Google Scholar 

  47. Y. Zhang, J. Wang, Y. Xu, A dual neural network for bi-criteria kinematic control of redundant manipulators. IEEE Trans. Robot. Autom. 18(6), 923–931 (2003)

    Article  Google Scholar 

  48. W. Zhou, J. Hou, A new adaptive high-order unscented Kalman filter for improving the accuracy and robustness of target tracking. IEEE Access 7, 118484–118497 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant Nos: 61773320) and Fundamental Research Funds for the Central Universities (Grant No. XDJK2020TY003) and also supported by the Natural Science Foundation Project of Chongqing CSTC (Grant No. cstc2018jcyjAX0583).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Xing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, H., Wang, H. & He, X. A Neurodynamic Algorithm for Sparse Signal Reconstruction with Finite-Time Convergence. Circuits Syst Signal Process 39, 6058–6072 (2020). https://doi.org/10.1007/s00034-020-01445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01445-3

Keywords

Navigation