Skip to main content
Log in

On the \(\mu \)-Analysis and Synthesis of MIMO Lurie-Type Systems with Application in Complex Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main contribution of this paper is to present a new approach to the analysis of the absolute stability of multiple-input–multiple-output (MIMO) Lurie-type systems using \(\mu \)-analysis and linear fractional transformations from the robust control theory. As a consequence, and also as an important contribution, the technique proposed enables the design of controllers via DK-Iteration for Lurie-type systems. For these, one extends the results obtained for Lurie-type systems to a closed-loop version of it. In addition, it is also conjectured that it is possible to make use of this new approach in time-delay MIMO Lurie-type systems. The obtained results allow a generalization of the theory for the analysis and design of controllers that can be useful in complex networks. Examples and comparisons with other results are given to illustrate the effectiveness of the methods of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. A. Aizerman, On the effect of nonlinear functions of several variables on the stability of automatic control systems (in Russian). Autom. I Telemekh. III 8(1), 2 (1947)

    Google Scholar 

  2. L. Alvergue, G. Gu, S. Acharya, A generalized sector bound approach to feedback stabilization of nonlinear control systems. Int. J. Robust Nonlinear Control 23(14), 1563–1580 (2012)

    Article  MathSciNet  Google Scholar 

  3. D.S. Bernstein, W.M. Haddad, A.G. Sparks, A Popov criterion for uncertain linear multivariable systems. Automatica 31(7), 1061–1064 (1995)

    Article  MathSciNet  Google Scholar 

  4. S. Boccaletti, V. Latora, Y. Moreno et al., Complex networks: structure and dynamics. Phys Rep. 424(45), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  5. D. Ding, Z. Wang, Q. Han, A set-membership approach to event-triggered filtering for general nonlinear systems over sensor network. IEEE Trans. Autom. Control 65(4), 1792–1799 (2020)

    Article  MathSciNet  Google Scholar 

  6. J. Doyle, Analysis of feedback systems with structured uncertainty. IEE Proc. D Control Theory Appl. 129(6), 242–250 (1982)

    Article  Google Scholar 

  7. J. Doyle, ONR/Honeywell workshop on advances on multivariable control (Lecture Notes, Minneapolis, 1984)

  8. J. Doyle, Structured uncertainty in control system design, in 24th IEEE Conference on Decision and Control, (1985), pp. 260–265

  9. G.E. Dullerud, F.G. Paganini, A Course in Robust Control Theory: A Convex Approach (Springer, New York, 2013)

    MATH  Google Scholar 

  10. M. Forti, A. Liberatore, S. Manetti, et al., On absolute stability of neural networks, in Proceedings of IEEE International Symposium on Circuits and Systems—ISCAS’94, (London 1994), vol. 6, pp. 241–244

  11. Q. Gao, J. Du, X. Liu, An improved absolute stability criterion for time-delay Lur’e systems and its frequency domain interpretation. Circuits Syst Signal Process. 36, 916–930 (2017)

    Article  MathSciNet  Google Scholar 

  12. P.B. Gapski, J.C. Geromel, A convex approach to the absolute stability problem. IEEE Trans. Autom. Control 25, 613–617 (1994)

    MathSciNet  MATH  Google Scholar 

  13. D.W. Gu, P.H. Petkov, M.M. Konstantinov, Robust control design with MATLAB, in Series Advanced Textbooks in Control and Signal Processing (Springer, London, 2006)

  14. M. Guzman, Ecuaciones Diferenciales Ordinarias-Teoria de estabilidad y control (Alhambra, Madrid, 1980)

    MATH  Google Scholar 

  15. E. Gyurkovics, D. Eszes, Sufficient conditions for stability and stabilization of networked control systems with uncertainties and nonlinearities. Int. J. Robust Nonlinear Control 21(14), 3004–3022 (2014)

    MathSciNet  MATH  Google Scholar 

  16. W.M. Haddad, D.S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. Part I: Continuous–time theory. Int. J. Robust Nonlinear Control 3, 313–339 (1993)

    Article  Google Scholar 

  17. F. Hao, X. Zhao, Absolute stability of Lurie networked control systems. Int. J. Robust Nonlinear Control 20(12), 1326–1337 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Y. He, M. Wu, J. She et al., Robust stability for delay Lure control systems with multiple nonlinearities. J. Comput. Appl. Math. 176, 371–380 (2005)

    Article  MathSciNet  Google Scholar 

  19. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  20. A. Imani, M. Montazeri-Gh, A multi-loop switching controller for aircraft gas turbine engine with stability proof. Int. J. Control Autom. Syst. 17, 1359–1368 (2019)

    Article  Google Scholar 

  21. R.E. Kalman, Lyapunov functions for the problem of Lurie in automatic control. Proc. Natl. Acad. Sci. 49(8), 201–205 (1963)

    Article  Google Scholar 

  22. E. Kaskurewicz, A. Bhaya, Comments on necessary and sufficient condition for absolute stability of neural network. IEEE Trans. Circuits Syst. 42, 497–499 (1995)

    Article  Google Scholar 

  23. N.N. Krasovskii, On the stability of the solutions of a system of two differential equations (in Russian). Prikl. Mat. i Mekh. XVII, 6 (1953)

    Google Scholar 

  24. C.M. Lee, J.C. Juang, A novel approach to stability analysis of multivariable Lurie systems. in IEEE International Conference on Mechatronics and Automation, (2005), pp 199–203

  25. X. Liao, Absolute Stability of Nonlinear Control Systems (Kluwer Academic China Science Press, Beijing, 1993)

    Book  Google Scholar 

  26. X. Liao, L. Wang, P. Yu, Stability of Dynamical Systems (Elsevier, Amsterdam, 2007)

    Book  Google Scholar 

  27. X. Liao, P. Yu, Absolute Stability of Nonlinear Control Systems, 2nd edn. (Springer, Berlin, 2008)

    Book  Google Scholar 

  28. X. Liao, C. Zhen, X. Fei et al., Robust absolute stability of Lurie interval control systems. Int. J. Robust Nonlinear Control 17(18), 1669–1689 (2007)

    Article  MathSciNet  Google Scholar 

  29. X. Liu, J.Z. Wang, Z.D. Duan et al., New absolute stability criteria for time-delay Lur’e systems with sector-bounded nonlinearity. Int. J. Robust Nonlinear Control 20, 659–672 (2010)

    Article  MathSciNet  Google Scholar 

  30. A.I. Lurie, V.N. Postnikov, On the theory of stability of control systems (in Russian). Prikl. Mat. i Mekh. VII I(3), 246–248 (1944)

    Google Scholar 

  31. T. Matsumoto, A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31(12), 1055–1058 (1984)

    Article  MathSciNet  Google Scholar 

  32. B.G. Morton, R.M. McAfoos, A mu-test for robustness analysis of a real-parameter variation problem, in American Control Conference (1985), pp. 135–138

  33. T. Naderi, D. Materassi, G. Innocenti, Revisiting Kalman and Aizerman conjectures via a graphical interpretation. IEEE Trans. Autom. Control 64(2), 670–682 (2018)

    Article  MathSciNet  Google Scholar 

  34. L. Peiran, B. Zhejing, Y. Qiang et al., \(\cal{H}_{\infty }\) control synthesis for Lurie networked control systems with multiple delays based on the non-uniform characteristic. Asian J. Control 15(4), 1112–1123 (2012)

    MathSciNet  MATH  Google Scholar 

  35. R.F. Pinheiro, The Lurie problem and applications to neural networks (in Portuguese). Master’s thesis, USP, São Paulo (2015)

  36. R.F. Pinheiro, D. Colón, An application of the Lurie problem in Hopfield neural networks, in Proceedings of DINAME 2017 (Springer, New York, 2019), pp. 371–382

  37. R.F. Pinheiro, D. Colón, Controller by\(\cal{H}_{\infty }\)mixed-sensitivity design (S/KS/T) for Lurie type systems, in 24th ABCM International Congress of Mechanical Engineering (ABCM, Curitiba, 2017)

  38. V.M. Popov, Absolute stability of nonlinear systems of automatic control. Remote Control XXI I(8), 857–875 (1961)

    MathSciNet  MATH  Google Scholar 

  39. X. Qi, J. Li, Y. Xia et al., On the robust stability of active disturbance rejection control for SISO systems. Circuits Syst Signal Process. 36, 65–81 (2017)

    Article  Google Scholar 

  40. M. Seron, J. Dona, On invariant sets and closed-loop boundedness of Lurie-type nonlinear systems by LPV-embedding. Int. J. Robust Nonlinear Control 26(5), 1092–1111 (2015)

    Article  Google Scholar 

  41. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd edn. (Wiley, New York, 2005)

    MATH  Google Scholar 

  42. A. Townley, M.G. Ilchmann, W. Weib et al., Existence and learning of oscillations in recurrent neural networks. IEEE Trans. Neural Netw. 11, 205–214 (2000)

    Article  Google Scholar 

  43. M. Vidyasagar, Nonlinear Systems Analysis, 2nd edn. (Englewood Cliffs, Bergen, 1993)

    MATH  Google Scholar 

  44. Y. Wang, Y. Xue, X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur’e systems with time-varying delays. J. Frankl. Inst. 353(4), 816–833 (2016)

    Article  MathSciNet  Google Scholar 

  45. Z. Yi, P.A. Heng, P. Vadakkepat, Absolute periodicity and absolute stability of delayed neural networks. IEEE Trans. Circuits Syst. 49, 256–261 (2002)

    Article  MathSciNet  Google Scholar 

  46. S.H. Zak, Systems and Control (Oxford University Press, New York, 2003)

    Google Scholar 

  47. H. Zeng, L. Ding, S.P. Xiao, et al., Improved stabilization method for Lurie networked control systems. Sci. World J. Article ID 789398, 6 pages (2014)

  48. H. Zeng, H. Yong, W. Min et al., Absolute stability and stabilization for Lurie networked control systems. Int. J. Robust Nonlinear Control 21(14), 1667–1676 (2010)

    Article  MathSciNet  Google Scholar 

  49. J. Zheng, B. Cui, State estimation of chaotic Lurie systems via communication channel with transmission delay. Circuits Syst Signal Process. 37, 4568–4583 (2018)

    Article  MathSciNet  Google Scholar 

  50. K. Zhou, J.C. Doyle, K. Glover, Robust Optimal Control (Pearson, London, 1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Fernandes Pinheiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes Pinheiro, R., Colón, D. On the \(\mu \)-Analysis and Synthesis of MIMO Lurie-Type Systems with Application in Complex Networks. Circuits Syst Signal Process 40, 193–232 (2021). https://doi.org/10.1007/s00034-020-01464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01464-0

Keywords

Navigation