Skip to main content
Log in

Modeling of the submicron CMOS differential ring oscillator for obtaining an equation for the output frequency

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A symbolic expression that approximates the output frequency of the submicron differential ring oscillator, using the detailed transient behavior of the MOSFETs, is presented in this article. The circuit of the oscillator is simulated from 3-stage till 21-stage, with the range of output frequency from 0.3756 GHz till 2.6925 GHz. Later on, for verifying the similar functionality with different Beta ratios, a 7-stage differential ring oscillator is utilized. The average difference between the computed and the simulated values of the output frequency is found to be 1.98%, with TSMC 180 nm technology, when the value of Beta ratio was 2.3. The expression indicates that the output frequency is inversely proportional to the square of the device length. By including an empirical constant in the derived equation, the mathematical expression can be utilized for the hand calculations, for obtaining the output frequency of the differential ring oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.L. Aranda, O.G. Diaz, C.R.B. Alvarez, A performance comparison of CMOS voltage-controlled ring oscillators for its application to generation and distribution clock networks. Sci J Circuits Syst Sig Process 2(2), 56–66 (2013)

    Google Scholar 

  2. H. Bazzi, M. A. Chanine, A. Mohsen, A. Harb, A Low-Noise Voltage-Controlled Ring Oscillator in 28-nm FDSOI Technology, IEEE—International Conference on Microelectronics, pp. 1–4, (2017). https://doi.org/10.1109/ICM.2017.8268826.

  3. M. Bhushan, M.B. Ketchen, CMOS test and evaluation: a physical perspective (Springer, Berlin, 2014), p. 381

    Google Scholar 

  4. Y. Cheng, C. Hu, MOSFET modeling and BSIM3 user’s guide (Kluwer Academic Publishers, London, 2002)

    Google Scholar 

  5. E.T. Cuautle, P.R.C. Avina, R.T. Guerra, V.H.C. Gomez, Design of a wide-band voltage-controlled ring oscillator implemented in 180 nm CMOS technology. Electronics 8(10), 1–17 (2019). https://doi.org/10.3390/electronics8101156

    Article  Google Scholar 

  6. S. Docking, M. Sachdev, An Analytical equation for the oscillation frequency of High-frequency ring oscillators. IEEE J Solid-State Circ 39(3), 533–537 (2004). https://doi.org/10.1109/JSSC.2003.822778

    Article  Google Scholar 

  7. B. Ghafari, L. Koushaeian, F. Goodarzy, R. Evans, E. Skafidas, An ultra-low-power and low-noise voltage controlled ring oscillator for biomedical applications, IEEE Tencon—Spring, pp. 20–24 (2013). https://doi.org/10.1109/TENCONSpring.2013.6584409.

  8. H. Ghonoodi, H.M. Naimi, M. Gholami, Analysis of frequency and amplitude in CMOS differential ring oscillators. Int VLSI J 52(1), 253–259 (2016). https://doi.org/10.1016/j.vlsi.2015.07.004

    Article  Google Scholar 

  9. V.H.C. Gomez, E.T. Cuautle, J.M.M. Pacheco, L.G. Fraga, C.S. Lopez, F.V.F. Fernandez, Optimization and CMOS design of chaotic oscillators robust to PVT variations. Int VLSI J 65(3), 32–42 (2019). https://doi.org/10.1016/j.vlsi.2018.10.010

    Article  Google Scholar 

  10. A. Hajimiri, T.H. Lee, Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circ 34(5), 717–724 (1999). https://doi.org/10.1109/4.760384

    Article  Google Scholar 

  11. A.R. Hazeri, H.M. Naimi, Novel closed-form equation for oscillation frequency range of differential ring oscillator. Analog Integr. Circ Sig Process 96(1), 117–123 (2018)

    Article  Google Scholar 

  12. H.R.E. Jazi, N. Ghaderi, A divider-less, high speed and wide locking range phase locked loop. AEU Int Electron Commun 69(4), 722–729 (2015)

    Article  Google Scholar 

  13. T. Kackar, S. Suman, P. K. Ghosh, Design of Improved Performance Differential Voltage Controlled Ring Oscillator, IEEE—International Conference on Electrical, Electronics, and Optimization Techniques, pp. 3473–3477 (2016). https://doi.org/10.1109/ICEEOT.2016.7755350.

  14. T. Kackar, S. Suman, P.K. Ghosh, Differential Voltage Controlled Ring Oscillators—A Review, Springer—International Conference on Communication and Networks, pp. 571–579 (2017)

  15. S. Karnran, N. Ghaderi, A Novel High Speed CMOS Pseudo-Differential Ring VCO with Wide Tuning Control Voltage Range, IEEE - Iranian Conference on Electrical Engineering, pp. 201–204 (2017). https://doi.org/10.1109/IranianCEE.2017.7985438.

  16. A. Koithyar, T. K. Ramesh, Characterization of submicron Ring oscillator using the First order design equations, IEEE—International Conference on Communication and Signal Processing, pp. 1227–1231 (2016). https://doi.org/10.1109/ICCSP.2016.7754348.

  17. A. Koithyar, T.K. Ramesh, Frequency equation for the submicron CMOS ring oscillator using the first order characterization. J Semicond 39(5), 055001:1–6 (2018). https://doi.org/10.1088/1674-4926/39/5/055001

    Article  Google Scholar 

  18. A. Koithyar, T. K. Ramesh,Integer-N Charge pump Phase locked loop with reduced current mismatch, IEEE—International Conference on Wireless Communications, Signal Processing and Networking, pp. 650–653 (2017). https://doi.org/10.1109/WiSPNET.2017.8299840.

  19. S. Lee, Y. Chuang, S. Jang, C. Chen, Low-phase noise hartley differential CMOS voltage controlled oscillator. IEEE Microwave Wirel Compon Lett 17(2), 145–147 (2007). https://doi.org/10.1109/LMWC.2006.890344

    Article  Google Scholar 

  20. A.J. Mondal, J. Talukdar, B.K. Bhattacharyya, Estimation of frequency and amplitude of ring oscillator built using current sources. Ain Shams Eng J (2020). https://doi.org/10.1016/j.asej.2020.01.006

    Article  Google Scholar 

  21. V.J.S. Oliveira, N. Oki, Frequency synthesizer using a hybrid analog/digital loop filter: a low complexity approach. AEU Int J Electron Commun 65(10), 888–891 (2010)

    Article  Google Scholar 

  22. J. Park, J. Park, Y. Choi, K. Sim, D. Baek, A fully-differential complementary hartley VCO in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett 20(2), 91–93 (2010). https://doi.org/10.1109/LMWC.2009.2038521

    Article  Google Scholar 

  23. N. Paydavosi, T.H. Morshed, D.D. Lu, W. Yang et al., BSIM4v4.8.0 MOSFET model—user’s manual (University of California, Department of Electrical Engineering and Computer Sciences, Berkeley, 2013)

    Google Scholar 

  24. R. Rahul, R. Thilagavathy, A Low Phase Noise CMOS Voltage-Controlled Differential Ring Oscillator, IEEE—International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 1025–1028 (2014). https://doi.org/10.1109/ICCICCT.2014.6993110.

  25. A. Ramazani, S. Biabani, G. Hadidi, CMOS ring oscillator with combined delay stages. AEU Int J Electron Commun 68(6), 515–519 (2014)

    Article  Google Scholar 

  26. B. Razavi, Design of analog CMOS integrated circuits, vol. 2 (McGraw Hill Education, New York, 2016)

    Google Scholar 

  27. J.P. Uyemura, CMOS logic circuit design (Kluwer Academic Publishers, New York, 2002), pp. 21–22

    Google Scholar 

  28. N. Weste, D. Harris, CMOS VLSI design: a circuits and systems perspective, vol. 4 (Pearson Education, London, 2010), pp. 147–148

    Google Scholar 

  29. K. Yeo, S.S. Rofail, W. Goh, CMOS/BiCMOS ULSI (Education, London, 2002), pp. 207–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Ramesh.

Ethics declarations

Availability of data and material

The datasets generated during and/or analyzed during the current study are available in the [scribd.com] repository [https://www.scribd.com/doc/258118011/tsmc180nmcmos].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koithyar, A., Ramesh, T.K. Modeling of the submicron CMOS differential ring oscillator for obtaining an equation for the output frequency. Circuits Syst Signal Process 40, 1589–1606 (2021). https://doi.org/10.1007/s00034-020-01547-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01547-y

Keywords

Navigation