Skip to main content
Log in

Some Stochastic Gradient Algorithms for Hammerstein Systems with Piecewise Linearity

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Some stochastic gradient (SG) algorithms for Hammerstein systems with piecewise linearity are developed in this paper. Due to the complexity of the nonlinear structure, the key term separation is used to transfer the nonlinear model into a regression model, and then, some SG algorithms are proposed for this model. Since the SG algorithm has slow convergence rate, a forgetting factor SG algorithm and an Aitken SG algorithm are provided. Compared with the forgetting factor SG algorithm, the Aitken SG algorithm has smaller variance of estimation error, which means the Aitken SG algorithm is more effective. Two simulation examples are provided to show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this article.

References

  1. M. Ahmadi, H. Mojallali, Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials. Appl. Math. Modell. 35(4), 1969–1982 (2011)

    MathSciNet  MATH  Google Scholar 

  2. E.W. Bai, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    MathSciNet  MATH  Google Scholar 

  3. E.W. Bai, Identification of linear systems with hard input nonlinearities of known structure. Automatica 38(5), 853–860 (2002)

    MathSciNet  MATH  Google Scholar 

  4. G. Bottegal, A.Y. Aravkin, H. Hjalmarsson, G. Pillonetto, Robust EM kernel-based methods for linear system identification. Automatica 67, 114–126 (2016)

    MathSciNet  MATH  Google Scholar 

  5. O. Bumbariu, A new Aitken type method for accelerating iterative sequences. Appl. Math. Comput. 219(1), 78–82 (2012)

    MathSciNet  MATH  Google Scholar 

  6. G.Y. Chen, M. Gan, G.L. Chen, Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications. Inf. Sci. 438, 46–57 (2018)

    MathSciNet  MATH  Google Scholar 

  7. J. Chen, Modified stochastic gradient algorithms with fast convergence rates. J. Vib. Control 17(9), 1281–1286 (2011)

    MathSciNet  MATH  Google Scholar 

  8. J. Chen, Y.J. Liu, Q.M. Zhu, Multi-step-length gradient iterative algorithm for equation-error type models. Syst. Control Lett. 115, 15–21 (2018)

    MathSciNet  MATH  Google Scholar 

  9. J. Chen, X.P. Wang, R. Ding, Gradient based estimation algorithm for Hammerstein systems with saturation and dead-zone nonlinearities. Appl. Math. Modell. 36, 238–243 (2012)

    MATH  Google Scholar 

  10. J. Chen, Q.M. Zhu, J. Li, Biased compensation recursive least squares algorithm for rational models. Nonlinear Dyn. 91(2), 797–807 (2018)

    MATH  Google Scholar 

  11. F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process 21(2), 215–238 (2011)

    Google Scholar 

  12. F. Ding, Y.J. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(1), 43–55 (2012)

    Google Scholar 

  13. F. Ding, L. Lv, J. Pan, X.K. Wan, X.B. Jin, Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data. Int. J. Control Autom. Syst. 18(4), 886–896 (2020)

    Google Scholar 

  14. F. Ding, L. Xu, D.D. Meng et al., Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 369, 112575 (2020)

    MathSciNet  MATH  Google Scholar 

  15. F. Ding, L. Xu, Q.M. Zhu, Performance analysis of the generalised projection identification for time-varying systems. IET Control Theory Appl. 10(18), 2506–2514 (2016)

    MathSciNet  Google Scholar 

  16. F. Ding, X. Zhang, L. Xu, The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 33(11), 1601–1608 (2019)

    MathSciNet  MATH  Google Scholar 

  17. M. Gan, C.L.P. Chen, G.Y. Chen, L. Chen, On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. 48(10), 2866–2874 (2018)

    Google Scholar 

  18. A. Hagenblad, L. Ljung, A. Wills, Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

    MathSciNet  MATH  Google Scholar 

  19. J.T. Hu, G.X. Sui, X.X. Lv, X.D. Li, Fixed-time control of delayed neural networks with impulsive perturbations. Nonlinear Anal.: Modell. Control 23(6), 904–920 (2018)

    MathSciNet  MATH  Google Scholar 

  20. A. Hussu, The conjugate-gradient method for optimal control problems with undetermined final time. Int. J. Control 15(1), 79–82 (1972)

    MATH  Google Scholar 

  21. Y. Ji, X.K. Jiang, L.J. Wan, Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. J. Frankl. Inst. 357(8), 5019–5032 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Y. Ji, C. Zhang, Z. Kang, T. Yu, Parameter estimation for block-oriented nonlinear systems using the key term separation. Int. J. Robust Nonlinear Control 30(9), 3727–3752 (2020)

    MathSciNet  Google Scholar 

  23. M.H. Li, X.M. Liu, Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int. J. Control Autom. Syst. 18(6), 1581–1592 (2020)

    Google Scholar 

  24. J.S. Li, Y.Y. Zheng, Z.P. Lin, Recursive identification of time-varying systems: Self-tuning and matrix RLS algorithms. Syst. Control Lett. 66, 104–110 (2014)

    MathSciNet  MATH  Google Scholar 

  25. X. Li, D. O’Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays. IMA J. Appl. Math. 80(1), 85–99 (2015)

    MathSciNet  MATH  Google Scholar 

  26. X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Google Scholar 

  27. X. Liu, J. Lam, W. Yu, G. Chen, Finite-time consensus of multiagent systems with a switching protocol. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 853–862 (2016)

    MathSciNet  Google Scholar 

  28. X.Y. Liu, H.S. Su, M.Z.Q. Chen, A switching approach to designing finite-time synchronization controllers of coupled neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 471–482 (2016)

    MathSciNet  Google Scholar 

  29. H. Ma, J. Pan et al., Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 13(18), 3040–3051 (2019)

    Google Scholar 

  30. J.X. Ma, W.L. Xiong et al., Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities. J. Frankl. Inst. 353(16), 4280–4299 (2016)

    MathSciNet  MATH  Google Scholar 

  31. H. Oktem, A survey on piecewise-linear models of regulatory dynamical systems. Nonlinear Anal.: Theory, Method Appl. 63(3), 336–349 (2005)

    MathSciNet  MATH  Google Scholar 

  32. J. Pan, X. Jiang, X.K. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Google Scholar 

  33. J. Pan, H. Ma, X. Zhang et al., Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process. 14(7), 455–466 (2020)

    Google Scholar 

  34. I. Pavaloiu, E. Catinas, On a robust Aitken–Newton method based on the Hermite polynomial. Appl. Math. Comput. 287, 224–231 (2016)

    MathSciNet  MATH  Google Scholar 

  35. C. Philippe, S.C. Johan, Hammerstein–Wiener system estimator initialization. Automatica 40(9), 1543–1550 (2004)

    MathSciNet  MATH  Google Scholar 

  36. H. Salhi, S. Kamoun, A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Appl. Math. Modell. 39(16), 4951–4962 (2015)

    MathSciNet  MATH  Google Scholar 

  37. J. Vörös, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities. Syst. Control Lett. 56(2), 99–105 (2007)

    MathSciNet  MATH  Google Scholar 

  38. L.J. Wang, Y. Ji, L.J. Wan, N. Bu, Hierarchical recursive generalized extended least squares estimation algorithms for a class of nonlinear stochastic systems with colored noise. J. Frankl. Inst. 356(16), 10102–10122 (2019)

    MathSciNet  MATH  Google Scholar 

  39. X.H. Wang, T. Hayat, A. Alsaedi, Combined state and multi-innovation parameter estimation for an input nonlinear state space system using the key term separation. IET Control Theory Appl. 10(13), 1503–1512 (2016)

    MathSciNet  Google Scholar 

  40. L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Google Scholar 

  41. L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)

    MathSciNet  MATH  Google Scholar 

  42. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    MATH  Google Scholar 

  43. L. Xu, W.L. Xiong, A. Alsaedi, T. Hayat, Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)

    Google Scholar 

  44. X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems. Math. Biosci. Eng. 15(6), 1495–1515 (2018)

    MathSciNet  MATH  Google Scholar 

  45. X. Zhang, F. Ding, Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control 30(4), 1351–1372 (2020)

    MathSciNet  Google Scholar 

  46. X. Zhang, F. Ding, L. Xu, Recursive parameter estimation methods and convergence analysis for a special class of nonlinear systems. Int. J. Robust Nonlinear Control 30(4), 1373–1393 (2020)

    MathSciNet  Google Scholar 

  47. X. Zhang, F. Ding, L. Xu, E.F. Yang, Highly computationally efficient state filter based on the delta operator. Int. J. Adapt. Control Signal Process. 33(6), 875–889 (2019)

    MathSciNet  MATH  Google Scholar 

  48. X. Zhang, Q.Y. Liu et al., Recursive identification of bilinear time-delay systems through the redundant rule. J. Frankl. Inst. 357(1), 726–747 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61973137), the Funds of the Science and Technology on Near-Surface Detection Laboratory (No. TCGZ2019A001) and the Fundamental Research Funds for the Central Universities (No. JUSRP22016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Yang, Y. & Chen, J. Some Stochastic Gradient Algorithms for Hammerstein Systems with Piecewise Linearity. Circuits Syst Signal Process 40, 1635–1651 (2021). https://doi.org/10.1007/s00034-020-01554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01554-z

Keywords

Navigation