Skip to main content
Log in

Adaptive S-Transform with Chirp-Modulated Window and Its Synchroextracting Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an adaptive S-transform with chirp-modulated window (ASTCMW) is proposed to improve the energy concentration of the S-transform using the rotation of a function which is the inverse fractional Fourier transform of the chirp-modulated window. The window contains two parameters, the chirp rate parameter and the frequency parameter. The chirp rate parameter varying over time and frequency can control the rotation of the function in the time–frequency plane, and it can be determined by maximizing the amplitude of the ASTCMW. The frequency parameter assists the chirp rate parameter to rotate the function at high frequencies, and it is analyzed by the match between the input signal and the chirp-modulated window. The ASTCMW improves greatly the energy concentration in the instantaneous frequency in noiseless and noisy environments. Furthermore, the instantaneous frequency equation based upon the ASTCMW is developed, and then, a synchroextracting transform is proposed. By extracting the time–frequency points satisfying the equation, the proposed synchroextracting transform sharpens the ASTCMW result and gives a high-resolution time–frequency representation. The experiment results demonstrate the effectiveness of the ASTCMW and the proposed synchroextracting transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. S. Assous, B. Boashash, Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation. EURASIP J. Adv. Signal Process. (2012). https://doi.org/10.1186/1687-6180-2012-49

    Article  Google Scholar 

  3. B. Biswal, P.K. Dash, M. Biswal, Time frequency analysis and FPGA implementation of modified S-transform for de-noising. Int. J. Signal Process. Image Process. Pattern Recogn. 4(2), 119–136 (2011)

    Google Scholar 

  4. R.A. Brown, M.L. Lauzon, R. Frayne, A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous S-transform spectrum nonredundantly. IEEE Trans. Signal Process. 58(1), 281–290 (2010)

    Article  MathSciNet  Google Scholar 

  5. A. Bultheel, H. Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)

    Article  MathSciNet  Google Scholar 

  6. L. Cohen, Time-Frequency Analysis: Theory and Application (Prentice Hall, Upper Saddle River, 1995)

    Google Scholar 

  7. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual Newton Conjugate Gradients method for Compressed Sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)

    Article  MathSciNet  Google Scholar 

  8. I. Dassios, G. Tzounas, F. Milano, Generalized fractional controller for singular systems of differential equations. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112919

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Dassios, G. Tzounas, F. Milano, Participation factors for singular systems of differential equations. Circuits Syst. Signal Process. 39(1), 83–110 (2020)

    Article  Google Scholar 

  10. I. Daubechies, J. Lu, H. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  Google Scholar 

  11. X. Dong, S. He, V. Stojanović, Robust fault detection filter design for a class of discrete-time conic-type non-linear Markov jump systems with jump fault signals. IET Contr. Theory Appl. 14(14), 1912–1919 (2020)

    Article  Google Scholar 

  12. P. Flandrin, F. Auger, E. Chassande-Mottin, Time-Frequency Reassignment: From Principles to Algorithms, in Applications in Time-Frequency Signal Processing (CRC, Arizona, 2003), pp. 179–203

    MATH  Google Scholar 

  13. A.V. Hirtum, D. Berckmans, Considering the influence of artificial environmental noise to study cough time-frequency features. J. Sound Vibr. 266(3), 667–675 (2003)

    Article  Google Scholar 

  14. Z. Huang, J. Zhang, T. Zhao, Y. Sun, Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. 54(2), 817–825 (2016)

    Article  Google Scholar 

  15. K. Kodera, R. Gendrin, C. Villedary, Analysis of time-varying signals with small BT values. IEEE Trans. Acoust. Speech Signal Process. 26(1), 64–76 (1978)

    Article  Google Scholar 

  16. K. Kodera, C. Villedary, R. Gendrin, A new method for the numerical analysis of non-stationary signals. Phys. Earth Planet. Int. 12(2–3), 142–150 (1976)

    Article  Google Scholar 

  17. Z. Li, J. Gao, H. Li, Z. Zhang, N. Liu, X. Zhu, Synchroextracting transform: the theory analysis and comparisons with the synchrosqueezing transform. Signal Process. (2020). https://doi.org/10.1016/j.sigpro.2019.107243

    Article  Google Scholar 

  18. Y. Liu, W. Zhou, P. Li, S. Yang, Y. Tian, An ultrahigh frequency partial discharge signal de-noising method based on a generalized S-transform and module time-frequency matrix. Sensors (2016). https://doi.org/10.3390/s16060941

    Article  Google Scholar 

  19. L. Mansinha, R.G. Stockwell, R.P. Lowe, Pattern analysis with two-dimensional spectral localisation: applications of two-dimensional S transform. Phys. A 239(1–3), 286–295 (1997)

    Article  Google Scholar 

  20. A. Moukadem, Z. Bouguila, D.O. Abdeslam, A. Dieterlen, A new optimized Stockwell transform applied on synthetic and real non-stationary signals. Digit. Signal Process. 46, 226–238 (2015)

    Article  MathSciNet  Google Scholar 

  21. A. Moukadem, A. Dieterlen, N. Hueber, C. Brandt, A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 8(3), 273–281 (2013)

    Article  Google Scholar 

  22. T. Oberlin, S. Meignen, V. Perrier, Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. Signal Process. 63(5), 1335–1344 (2015)

    Article  MathSciNet  Google Scholar 

  23. T. Oberlin, S. Meignen, V. Perrier, The Fourier-based synchrosqueezing transform, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014), pp. 315–319

  24. Z.K. Peng, G. Meng, F.L. Chu, Z.Q. Lang, W.M. Zhang, Y. Yang, Polynomial chirplet transform with application to instantaneous frequency estimation. IEEE Trans. Instrum. Meas. 60(9), 3222–3229 (2011)

    Article  Google Scholar 

  25. C.R. Pinnegar, A new subclass of complex-valued S-transform windows. Signal Process. 86(8), 2051–2055 (2006)

    Article  MathSciNet  Google Scholar 

  26. C.R. Pinnegar, L. Mansinha, The bi-Gaussian S-transform. SIAM J. Sci. Comput. 24(5), 1678–1692 (2003)

    Article  MathSciNet  Google Scholar 

  27. C.R. Pinnegar, L. Mansinha, The S-transform with windows of arbitrary and varying shape. Geophysics 68(1), 381–385 (2003)

    Article  Google Scholar 

  28. C.R. Pinnegar, L. Mansinha, Time-local Fourier analysis with a scalable, phase-modulated analyzing function: the S-transform with a complex window. Signal Process. 84(7), 1167–1176 (2004)

    Article  Google Scholar 

  29. D. Pršić, N. Nedić, V. Stojanović, A nature inspired optimal control of pneumatic-driven parallel robot platform. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 231(1), 59–71 (2017)

  30. M.J.B. Reddy, R.K. Raghupathy, K.P. Venkatesh, D.K. Mohanta, Power quality analysis using discrete orthogonal S-transform (DOST). Digit. Signal Process. 23(2), 616–626 (2013)

    Article  MathSciNet  Google Scholar 

  31. E. Sejdić, I. Djurović, J. Jiang, A window width optimized S-transform. EURASIP J. Adv. Signal Process. (2008). https://doi.org/10.1155/2008/672941

    Article  MATH  Google Scholar 

  32. H. Singh, R.K. Tripathy, R.B. Pachori, Detection of sleep apnea from heart beat interval and ECG derived respiration signals using sliding mode singular spectrum analysis. Digit. Signal Process. (2020). https://doi.org/10.1016/j.dsp.2020.102796

    Article  Google Scholar 

  33. R.G. Stockwell, A basis for efficient representation of the S-transform. Digit. Signal Process. 17(1), 371–393 (2007)

    Article  Google Scholar 

  34. R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  Google Scholar 

  35. V. Stojanović, S. He, B. Zhang, State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises. Int. J. Robust Nonlinear Control 30(16), 6683–6700 (2020)

    Article  MathSciNet  Google Scholar 

  36. V. Stojanović, N. Nedić, D. Prsic, L. Dubonjic, V. Djordjevic, Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. Int. J. Adv. Manuf. Technol. 87(9–12), 2497–2507 (2016)

    Article  Google Scholar 

  37. H. Tao, P. Wang, Y. Chen, V. Stojanović, H. Yang, An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J. Frankl. Inst.-Eng. Appl. Math. 357(11), 7286–7307 (2020)

    Article  MathSciNet  Google Scholar 

  38. X. Tu, Y. Hu, F. Li, S. Abbas, Z. Liu, W. Bao, Demodulated high-order synchrosqueezing transform with application to machine fault diagnosis. IEEE Trans. Ind. Electron. 66(4), 3071–3081 (2019)

    Article  Google Scholar 

  39. S. Ventosa, C. Simon, M. Schimmel, J.J. Dañobeitia, A. Mànuel, The S-transform from a wavelet point of view. IEEE Trans. Signal Process. 56(7), 2771–2780 (2008)

    Article  MathSciNet  Google Scholar 

  40. B. Wang, Y. Yin, C. Yuan, P. Wang, An amplitude- and frequency-preserving S transform. IEEE Geosci. Remote Sens. Lett. (2020). https://doi.org/10.1109/LGRS.2020.2994135

    Article  Google Scholar 

  41. L. Wang, X. Meng, An adaptive Generalized S-transform for instantaneous frequency estimation. Signal Process. 91(8), 1876–1886 (2011)

    Article  Google Scholar 

  42. Q. Wang, J. Gao, N. Liu, X. Jiang, High-resolution seismic time-frequency analysis using the synchrosqueezing generalized S-transform. IEEE Geosci. Remote Sens. Lett. 15(3), 374–378 (2018)

    Article  Google Scholar 

  43. G. Yu, M. Yu, C. Xu, Synchroextracting transform. IEEE Trans. Ind. Electron. 64(10), 8042–8054 (2017)

    Article  Google Scholar 

  44. G. Yu, Y. Zhou, General linear chirplet transform. Mech. Syst. Signal Process. 70–71, 958–973 (2016)

    Article  Google Scholar 

  45. K. Zhang, X. Chen, L. Liao, M. Tang, J. Wu, A new rotating machinery fault diagnosis method based on local oscillatory-characteristic decomposition. Digit. Signal Process. 78, 98–107 (2018)

    Article  Google Scholar 

  46. X. Zhang, S. He, V. Stojanović, X. Luan, F. Liu, Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems. Sci. China-Inf. Sci. (2021). https://doi.org/10.1007/s11432-020-2913-x

    Article  MathSciNet  Google Scholar 

  47. D. Zhu, Q. Gao, D. Sun, Y. Lu, S. Peng, A detection method for bearing faults using null space pursuit and S transform. Signal Process. 96, 80–89 (2014)

    Article  Google Scholar 

  48. X. Zhu, Z. Zhang, J. Gao, B. Li, Z. Li, X. Huang, G. Wen, Synchroextracting chirplet transform for accurate IF estimate and perfect signal reconstruction. Digit. Signal Process. 93, 172–186 (2019)

    Article  Google Scholar 

  49. Z. Zidelmal, H. Hamil, A. Moukadem, A. Amirou, D. Ould-Abdeslam, S-transform based on compact support kernel. Digit. Signal Process. 62, 137–149 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant U20B2075. The authors wish to thank the editor and the anonymous reviewers for their constructive comments and suggestions in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuosheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, Z. & Zhu, X. Adaptive S-Transform with Chirp-Modulated Window and Its Synchroextracting Transform. Circuits Syst Signal Process 40, 5654–5681 (2021). https://doi.org/10.1007/s00034-021-01740-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01740-7

Keywords

Navigation