Skip to main content
Log in

How to Deal with Parameter Estimation in Continuous-Time Stochastic Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we present some options to deal with the problem of parameter estimation in continuous-time stochastic systems under white, and coloured noise perturbations using classical methods. Least-squares method (LSM) is one of the most widely used estimation methods, in continuous and discrete time systems, but it presents a bias problem. The instrumental variable method (IV), even though is considered the best option when a noise is present in the system dynamics, cannot completely minimize its effect in continuous time. Here, we propose to combine these algorithms with two auxiliary techniques: the Kalman filter and the equivalent control. These techniques working in parallel with the LSM and IV estimation algorithm will reduce the bias, the noise effect in the estimated parameters, and are very easy to implement. The effectiveness of the proposed methods is illustrated in a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

There are no data associated with this paper.

References

  1. R.J. Bowden, D.A. Turkington, Instrumental Variables, vol. 8 (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  2. C.K. Chui, G. Chen et al., Kalman Filtering (Springer, Berlin, 2017)

    Book  Google Scholar 

  3. J. Davila, L. Fridman, A. Poznyak, Observation and identification of mechanical systems via second order sliding modes. Int. J. Control 79(10), 1251–1262 (2006)

    Article  MathSciNet  Google Scholar 

  4. C. Edwards, S. Spurgeon, Sliding Mode Control: Theory and Applications (CRC Press, Cambridge, 1998)

    Book  Google Scholar 

  5. J. Escobar, M. Enqvist, Instrumental variables and LSM in continuous-time parameter estimation. ESAIM Control Optim. Calc. Var. 23(2), 427–442 (2017)

    Article  MathSciNet  Google Scholar 

  6. J. Escobar, A. Poznyak, Benefits of variable structure techniques for parameter estimation in stochastic systems using least squares method and instrumental variables. Int. J. Adapt. Control Signal Process. 29(8), 1038–1054 (2015)

    Article  MathSciNet  Google Scholar 

  7. C.-P. Fritzen, Identification of mass, damping, and stiffness matrices of mechanical systems. J. Vib. Acoust. Stress Reliab. 108(1), 9–16 (1986)

  8. Z. Gao, Y. Liu, C. Yang, X. Chen, Unscented Kalman filter for continuous-time nonlinear fractional-order systems with process and measurement noises. Asian J. Control 22(5), 1961–1972 (2020)

    Article  MathSciNet  Google Scholar 

  9. M. Gilson, P. Van Den Hof, Instrumental variable methods for closed-loop system identification. Automatica 41(2), 241–249 (2005)

    Article  MathSciNet  Google Scholar 

  10. M.S. Grewal, A.P. Andrews, Kalman Filtering: Theory and Practice with MATLAB (Wiley, New York, 2014)

    MATH  Google Scholar 

  11. C. Hajiyev, GNSs signals processing via linear and extended Kalman filters. Asian J. Control 13(2), 273–282 (2011)

    Article  MathSciNet  Google Scholar 

  12. E. Jesica, A. Poznyak, Parameter estimation in continuous-time stochastic systems with correlated noises using the Kalman filter and least squares method. IFAC-PapersOnLine 51(13), 309–313 (2018)

    Article  Google Scholar 

  13. Johnson, M.L., Faunt, L.M.: [1] parameter estimation by least-squares methods. In: Methods in enzymology, vol. 210, pp. 1–37. Elsevier, New York (1992)

  14. K.J. Keesman, System Identification: An Introduction (Springer, Berlin, 2011)

    Book  Google Scholar 

  15. G.Y. Kulikov, M.V. Kulikova, Square-root accurate continuous-discrete extended-unscented Kalman filtering methods with embedded orthogonal and j-orthogonal qr decompositions for estimation of nonlinear continuous-time stochastic models in radar tracking. Signal Process. 166, 107253 (2020)

    Article  Google Scholar 

  16. L. Lennart, System Identification: Theory for the User (PTR Prentice Hall, Upper Saddle River, 1999), pp. 1–14

    Google Scholar 

  17. Q. Liu, F. Ding, Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits Syst. Signal Process. 38(2), 590–610 (2019)

    Article  Google Scholar 

  18. E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)

    Article  Google Scholar 

  19. M.C. Mackey, I.G. Nechaeva, Solution moment stability in stochastic differential delay equations. Phys. Rev. E 52(4), 3366 (1995)

    Article  MathSciNet  Google Scholar 

  20. T. Martinussen, S. Vansteelandt, Instrumental variables estimation with competing risk data. Biostatistics 21(1), 158–171 (2020)

    Article  MathSciNet  Google Scholar 

  21. A. Maydeu-Olivares, D. Shi, A.J. Fairchild, Estimating causal effects in linear regression models with observational data: the instrumental variables regression model. Psychol. Methods 25(2), 243 (2020)

    Article  Google Scholar 

  22. A. Maydeu-Olivares, D. Shi, Y. Rosseel, Instrumental variables two-stage least squares (2sls) vs. maximum likelihood structural equation modeling of causal effects in linear regression models. Struct. Equ. Model Multidiscipl. J. 26(6), 876–892 (2019)

    Article  MathSciNet  Google Scholar 

  23. R. Mehra, On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans. Autom. Control 16(1), 12–21 (1971)

    Article  MathSciNet  Google Scholar 

  24. W.K. Newey, J.L. Powell, Instrumental variable estimation of nonparametric models. Econometrica 71(5), 1565–1578 (2003)

    Article  MathSciNet  Google Scholar 

  25. P. Ordaz, L. Rodríguez-Guerrero, O. Santos, C. Cuvas, H. Romero, M. Ordaz-Oliver, P. López-Pérez, Parameter estimation of a second order system via nonlinear identification algorithm, in IOP Conference Series: Materials Science and Engineering, vol. 844, p. 012038. IOP Publishing (2020)

  26. S. Pan, R.A. González, J.S. Welsh, C.R. Rojas, Consistency analysis of the simplified refined instrumental variable method for continuous-time systems. Automatica 113, 108767 (2020)

    Article  MathSciNet  Google Scholar 

  27. R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach (Wiley, New York, 2012)

    Book  Google Scholar 

  28. S. Rao, M. Buss, V. Utkin, Simultaneous state and parameter estimation in induction motors using first-and second-order sliding modes. IEEE Trans. Ind. Electron. 56(9), 3369–3376 (2009)

    Article  Google Scholar 

  29. A. Sabanovic, Variable structure systems with sliding modes in motion control-a survey. IEEE Trans. Ind. Inf. 7(2), 212–223 (2011)

    Article  Google Scholar 

  30. K. Sobczyk, Stochastic Differential Equations: With Applications to Physics and Engineering, vol. 40 (Springer, Berlin, 2013)

    MATH  Google Scholar 

  31. H.W. Sorenson, Least-squares estimation: from gauss to Kalman. IEEE Spectr. 7(7), 63–68 (1970)

    Article  Google Scholar 

  32. A.K. Tangirala, Principles of System Identification: Theory and Practice (CRC Press, Cambridge, 2018)

    Book  Google Scholar 

  33. M.L. Tseng, M.S. Chen, Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 12(3), 392–398 (2010)

    Article  MathSciNet  Google Scholar 

  34. C. Tudor, Procesos Estocásticos/por Constantin Tudor. 519(2), T8 (1997)

  35. H. Unbehauen, G. Rao, Continuous-time approaches to system identification-a survey. Automatica 26(1), 23–35 (1990)

    Article  MathSciNet  Google Scholar 

  36. V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 2013)

    Google Scholar 

  37. S.Y. Wang, C. Yin, S.K. Duan, L.D. Wang, A modified variational bayesian noise adaptive Kalman filter. Circuits Syst. Signal Process. 36(10), 4260–4277 (2017)

    Article  Google Scholar 

  38. M. Winter-Jensen, S. Afzal, T. Jess, B.G. Nordestgaard, K.H. Allin, Body mass index and risk of infections: a mendelian randomization study of 101,447 individuals. Eur. J. Epidemiol. 35(4), 347–354 (2020)

    Article  Google Scholar 

  39. J.N. Yang, S. Lin, Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique. J. Eng. Mech. 131(3), 290–298 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Marcos A. González-Olvera acknowledges UACM, Project PI-CCyT-2021-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gabriela Gallardo-Hernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, J., Gallardo-Hernandez, A.G. & Gonzalez-Olvera, M.A. How to Deal with Parameter Estimation in Continuous-Time Stochastic Systems. Circuits Syst Signal Process 41, 2338–2357 (2022). https://doi.org/10.1007/s00034-021-01862-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01862-y

Keywords

Navigation