Skip to main content
Log in

Polynomial Constraint Generalized Maximum Correntropy Normalized Subband Adaptive Filter Algorithm

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a generalized maximum correntropy normalized subband adaptive filter (GMCNSAF) algorithm is proposed for enhancing the convergence behavior of generalized maximum correntropy criterion algorithm under correlated signals. To promote the convergence behavior of GMCNSAF when identifying the sparse system, the polynomial zero attraction constraint is incorporated into it to yield the PZAGMCNSAF algorithm. Furthermore, to alleviate the conflicting requirements with regard to convergence rate and steady-state misalignment, a variable step-size scheme is applied into the PZAGMCNSAF, obtaining the VSSPZAGMCNSAF algorithm. Also, we analyze the convergence condition of GMCNSAF and give the step-size bound. Simulations prove that the proposed algorithms obtain superior performance for sparse system identification and echo cancelation scenario under impulsive interference as compared to related algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. C.R. Berger, S. Zhou, J.C. Preisig, P. Willett, Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Trans. Signal Process. 58(3), 1708–1721 (2010)

    Article  MathSciNet  Google Scholar 

  2. Y.-R. Chien, Variable regularization affine projection sign algorithm in impulsive noisy environment. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(5), 725–728 (2019)

    Article  Google Scholar 

  3. Y. Chien, J. Li-You, Convex combined adaptive filtering algorithm for acoustic echo cancellation in hostile environments. IEEE Access 6, 16138–16148 (2018)

    Article  Google Scholar 

  4. S.C. Chan, Y. Zou, A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans. Signal Process. 52(4), 975–991 (2004)

    Article  MathSciNet  Google Scholar 

  5. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Principe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  Google Scholar 

  6. Y. Chen, Y. Gu, A.O. Hero, III, Sparse LMS for system identification, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan (2009), pp. 3125–3128

  7. Y. Choi, Subband adaptive filtering with l1-norm constraint for sparse system identification. Math. Probl. Eng. 66, 1–7 (2013)

    Google Scholar 

  8. Y. Choi, A new subband adaptive filtering algorithm for sparse system identification with impulsive noise. J. Appl. Math. 66, 1–7 (2014)

    Google Scholar 

  9. Y. Gu, J. Jin, S. Mei, l0-Norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)

    Article  Google Scholar 

  10. J. Jeong, S. Kim, Robust adaptive filter algorithms against impulsive noise. Circuits Systems Signal Process. 38, 5651–5664 (2019)

    Article  Google Scholar 

  11. J.J. Jeong, A robust affine projection algorithm against impulsive noise. IEEE Signal Process. Lett. 27, 1530–1534 (2020)

    Article  Google Scholar 

  12. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  13. L. Lu, H. Zhao, C. Chen, A new normalized subband adaptive filter under minimum error entropy criterion. SIViP 10(6), 1097–1103 (2016)

    Article  Google Scholar 

  14. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  15. J. Maheshwari, N. George, Polynomial sparse adaptive algorithm. Electron. Lett. 52(25), 2063–2065 (2016)

    Article  Google Scholar 

  16. W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, B. Chen, Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Frankl. Inst. 354(18), 2708–2727 (2015)

    Article  Google Scholar 

  17. J. Ni, F. Li, Variable regularisation parameter sign subband adaptive filter. Electron. Lett. 46(24), 1605–1607 (2010)

    Article  Google Scholar 

  18. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984)

    Article  MathSciNet  Google Scholar 

  19. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, 2003)

    Google Scholar 

  20. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  21. L. Shi, Y. Lin, X. Xie, Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference. Electron. Lett. 50(6), 466–467 (2014)

    Article  Google Scholar 

  22. Z. Shen, T. Huang, K. Zhou, L0-norm constraint normalized logarithmic subband adaptive flter algorithm. Signal Image Video Process. 12(5), 861–868 (2018)

    Article  Google Scholar 

  23. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986). https://doi.org/10.2307/2347507

    Book  MATH  Google Scholar 

  24. P. Wen, J. Zhang, Robust variable step-size sign subband adaptive filter algorithm against impulsive noise. Signal Process. 139, 110–115 (2017)

    Article  Google Scholar 

  25. W. Wang, J. Zhao, H. Qu, B. Chen, A correntropy inspired variable step-size sign algorithm against impulsive noises. Signal Process. 141, 168–175 (2017)

    Article  Google Scholar 

  26. Y. Yu, H. He, B. Chen, J. Li, Y. Zhang, L. Lu, M-estimate based normalized subband adaptive filter algorithm: performance analysis and improvements. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 225–239 (2020)

    Article  Google Scholar 

  27. Y. Yu, H. Zhao, B. Chen, Z. He, Two improved normalized subband adaptive filter algorithms with good robustness against impulsive interferences. Circuits Syst. Signal Process. 35(12), 4607–4619 (2016)

    Article  MathSciNet  Google Scholar 

  28. Y. Zhou, S.C. Chan, K.L. Ho, New sequential partial-update least mean M-estimate algorithms for robust adaptive system identification in impulsive noise. IEEE Trans. Industr. Electron. 58(9), 4455–4470 (2011)

    Article  Google Scholar 

  29. Y. Zou, S.C. Chan, T.S. Ng, Least mean M-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1564–1569 (2000)

    Article  Google Scholar 

  30. Z. Zheng, H. Zhao, Affine projection M-estimate subband adaptive filters for robust adaptive filtering in impulsive noise. Signal Process. 120, 64–70 (2016)

    Article  Google Scholar 

  31. J. Zhao, H. Zhang, J.A. Zhang, Generalized maximum correntropy algorithm with affine projection for robust filtering under impulsive-noise environments. Signal Process. 172, 66 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grants: 62171388, 61871461, 61571374), Department of Science and Technology of Sichuan Province (Grants: 2019YJ0225, 2020JDTD0009), Fundamental Research Funds for the Central Universities (Grant: 2682021ZTPY091), and the funding of Chengdu Guojia Electrical Engineering Co., Ltd (Grant: NEEC-2019-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhao, H., He, X. et al. Polynomial Constraint Generalized Maximum Correntropy Normalized Subband Adaptive Filter Algorithm. Circuits Syst Signal Process 41, 2379–2396 (2022). https://doi.org/10.1007/s00034-021-01878-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01878-4

Keywords

Navigation