Skip to main content
Log in

State and Fault Estimation for T–S Fuzzy Nonlinear Systems Using an Ensemble UKF

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new filter based on a Takagi–Sugeno (T–S) fuzzy augmented ensemble unscented Kalman filter (FAEnUKF) for a class of nonlinear stochastic systems with multiplicative fault and noise. Multiplying a nonlinear term on the fault signal generates a non-Gaussian noise which cannot be optimally estimated by the Kalman filter. One way to resolve this problem is to transform the nonlinear system to several T–S fuzzy systems with Gaussian noise. Using the sector nonlinearity model, the nonlinear term can be derived as constant matrices for each fuzzy rule. Thus, fuzzy augmented UKFs (AUKFs) are designed for state and fault estimation. Using Lyapunov’s stability theory, the convergence conditions of the developed filter algorithm are presented as a theorem. In addition, the boundedness of the error covariance matrix of the proposed algorithm is discussed theoretically. Finally, selected illustrative examples to evaluate the effectiveness of the FAEnUKF are presented. Comparisons between the FAEnUKF and the augmented extended Kalman filter (AEKF) and the AUKF are made in a numerical example. The simulation results showed the robustness of the fuzzy ensemble UKF for modeling the non-Gaussian noise. Despite the increase in the number of calculations in this method, the root-mean-square error (RMSE) is less than other filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. R. Bansal, Stochastic filtering in fractional-order circuits. Nonlinear Dyn 103, 1117 (2021). https://doi.org/10.1007/s11071-020-06152-x

    Article  Google Scholar 

  2. R. Bansal, S. Majumdar, H. Parthasarathy, Extended Kalman filter based nonlinear system identification described in terms of Kronecker product. Int J Electron Commun 108, 107–117 (2019). https://doi.org/10.1016/j.aeue.2019.05.033

    Article  Google Scholar 

  3. G.H. Bazan, A. Goedtel, M.F. Castoldi, W.F. Godoy, O. Duque-Perez, D. Morinigo-Sotelo, Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors. Appl. Sci. 11(1), 314 (2021). https://doi.org/10.3390/app11010314

    Article  Google Scholar 

  4. A. Ben Brahim, S. Dhahri, F. Ben Hmida, A. Sellami, Adaptive sliding mode fault tolerant control design for uncertain nonlinear systems with multiplicative faults: Takagi–Sugeno fuzzy approach. Proc. Inst. Mech. Eng. I. 234, 147 (2020)

  5. F. Ben Hmida, K. Khémiri, J. Ragot, M. Gossa, Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs. J Frankl Inst (2012). https://doi.org/10.1016/j.jfranklin.2012.05.004

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Blanke, J. Schrder, Diagnosis and Fault-Tolerant Control (Springer, Berlin, 2010)

    Google Scholar 

  7. M. Boutayeb, D. Aubry, A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. Automat. Contr. 44, 1550 (1999). https://doi.org/10.1109/9.780419

    Article  MathSciNet  MATH  Google Scholar 

  8. B.S. Chen, M.Y. Lee, T.H. Lin, W. Zhang, Robust state/fault estimation and fault-tolerant control in discrete-time ts fuzzy systems: an embedded smoothing signal model approach. IEEE Trans Cybern (2021). https://doi.org/10.1109/TCYB.2020.3042984

    Article  Google Scholar 

  9. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Springer, Boston, 1999)

    Book  Google Scholar 

  10. X. Chen, R. Sun, M. Liu, D. Song, Two-stage exogenous Kalman filter for time-varying fault estimation of satellite attitude control system. J Frankl Inst. 357, 2354 (2020)

    Article  MathSciNet  Google Scholar 

  11. X. Chen, R. Sun, F. Wang, D. Song, W. Jiang, Two-stage unscented Kalman filter algorithm for fault estimation in spacecraft attitude control system. IET Control Theory Appl 12, 1781 (2018)

    Article  MathSciNet  Google Scholar 

  12. D.E. Cheridi, N. Mansouri, Robust H fault-tolerant control for discrete-time nonlinear system with actuator faults and time-varying delays using nonlinear T-S fuzzy models. Circuits Syst Signal Process 39(1), 175–198 (2020). https://doi.org/10.1007/s00034-019-01190-2

    Article  Google Scholar 

  13. W. El Sayed, M. Abd El Geliel, A. Lotfy, Fault diagnosis of PMSG stator inter-turn fault using extended kalman filter and unscented kalman filter. Energies 13, 2972 (2020)

    Article  Google Scholar 

  14. H. Gao, T. Chen, Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15, 972 (2007). https://doi.org/10.1109/TFUZZ.2006.890660

    Article  Google Scholar 

  15. Y. Gu, G.H. Yang, Simultaneous actuator and sensor fault estimation for discrete-time Lipschitz nonlinear systems in finite-frequency domain. Optim Control Appl Meth 39, 410 (2018)

    Article  MathSciNet  Google Scholar 

  16. E.H. Houssein, M.R. Saad, F.A. Hashim, H. Shaban, M. Hassaballah, Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell 94, 103731 (2020). https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  17. J. Huang, Z. Jiang, J. Zhao, Component fault diagnosis for nonlinear systems. JSEE 27, 1283 (2016). https://doi.org/10.21629/JSEE.2016.06.16

    Article  Google Scholar 

  18. E.W. Kamen, J.K. Su, Introduction to Optimal Estimation (Springer, London, London, 1999)

    Book  Google Scholar 

  19. S. Kluge, K. Reif, M. Brokate, Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. Automat. Contr. 55, 514 (2010). https://doi.org/10.1109/TAC.2009.2037467

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Lan, M. Yu, C. Xiao, Model-based Distributed Diagnosis for Electro-hydraulic Suspension System. In: 2020 39th Chinese Control Conference (CCC) 2020, pp. 4182–4187. IEEE https://doi.org/10.23919/CCC50068.2020.9188427

  21. F.L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory (Wiley, New York, 1986)

    MATH  Google Scholar 

  22. L. Li, S.X. Ding, H. Luo, K. Peng, Y. Yang, Performance-based fault-tolerant control approaches for industrial processes with multiplicative faults. IEEE Trans. Ind. Inf. 16, 4759 (2020)

    Article  Google Scholar 

  23. N. Li, H. Sun, Q. Zhang, Robust passive adaptive fault tolerant control for stochastic wing flutter via delay control. Eur. J. Control. 48, 74 (2019)

    Article  MathSciNet  Google Scholar 

  24. L. Li, Y. Xia, Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica 48, 978 (2012). https://doi.org/10.1016/j.automatica.2012.02.014

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Li, Y. Zhang, Y. Geng, Fault-tolerant sliding mode control for uncertain active suspension systems against simultaneous actuator and sensor faults via a novel sliding mode observer. Optim Control Appl Meth 39, 1728 (2018)

    Article  MathSciNet  Google Scholar 

  26. Y. Ma, M. Shen, H. Du, Y. Ren, G. Bian, An iterative observer-based fault estimation for discrete-time TS fuzzy systems. Int. J. Syst. Sci. (2020). https://doi.org/10.1080/00207721.2020.1746440

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Martínez-García, V. Puig, C.M. Astorga-Zaragoza, G. Madrigal-Espinosa, J. Reyes-Reyes, Estimation of actuator and system faults via an unknown input interval observer for takagi–sugeno systems. Processes 8(1), 61 (2020). https://doi.org/10.3390/pr8010061

    Article  Google Scholar 

  28. A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4. ed., internat. ed., Nachdr (McGraw-Hill, Boston, Mass., 2009)

  29. B. Pourbabaee, N. Meskin, K. Khorasani, Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties. Mech. Syst. Signal Process. 76–77, 136 (2016). https://doi.org/10.1016/j.ymssp.2016.02.023

    Article  Google Scholar 

  30. M.H. Qais, H.M. Hasanien, S. Alghuwainem, Whale optimization algorithm-based Sugeno fuzzy logic controller for fault ride-through improvement of grid-connected variable speed wind generators. Eng. Appl. Artif. Intell 87, 103328 (2020). https://doi.org/10.1016/j.engappai.2019.103328

    Article  Google Scholar 

  31. A. Rahimi, K.D. Kumar, H. Alighanbari, Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter. Acta Astronaut. 134, 159 (2017). https://doi.org/10.1016/j.actaastro.2017.02.003

    Article  Google Scholar 

  32. K. Reif, S. Gunther, E. Yaz, R. Unbehauen, Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Automat. Contr. 44, 714 (1999). https://doi.org/10.1109/9.754809

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Rotondo, F.R. López-Estrada, F. Nejjari, J.C. Ponsart, D. Theilliol, V. Puig, Actuator multiplicative fault estimation in discrete-time LPV systems using switched observers. J Frankl Inst. 353, 3176 (2016). https://doi.org/10.1016/j.jfranklin.2016.06.007

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Samarji, M. Salamah, A fault tolerance metaheuristic‐based scheme for controller placement problem in wireless software‐defined networks. INT J COMMUN SYST, e4624. https://doi.org/10.1002/dac.4624

  35. Y. Shabbouei Hagh, R. Mohammadi Asl, V. Cocquempot, A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter. ISA Tran. 66, 262 (2017). https://doi.org/10.1016/j.isatra.2016.09.009

  36. A.A. Sheydaeian Arani, M. Aliyari Shoorehdeli, A. Moarefianpour, M. Teshnehlab, Fault estimation based on ensemble unscented Kalman filter for a class of nonlinear systems with multiplicative fault. Int. J. Syst. Sci. (2021). https://doi.org/10.1080/00207721.2021.1876959

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Sun, Y. Wang, H. Zhang, J. Sun, Multiple intermittent fault estimation and tolerant control for switched TS fuzzy stochastic systems with multiple time-varying delays. Appl. Math. Comput 377, 125114 (2020). https://doi.org/10.1016/j.amc.2020.125114

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Sun, H. Zhang, J. Han, Y. Liang, A novel double-level observer-based fault estimation for Takagi-Sugeno fuzzy systems with unknown nonlinear dynamics. Trans. Inst. Meas. Control 41, 3372 (2019). https://doi.org/10.1177/0142331219826655

    Article  Google Scholar 

  39. S. Sun, H. Zhang, Y. Wang, J. Han, J. Wu, Fault estimation based on Kalman filtering for Takagi-Sugeno fuzzy systems, in 2017 Chinese Automation Congress (CAC) (IEEE, Jinan, 2017), pp. 1653–1658

  40. S. Sun, H. Zhang, J. Zhang, K. Zhang, Fault estimation and tolerant control for discrete-time multiple delayed fuzzy stochastic systems with intermittent sensor and actuator faults. IEEE Trans Cybern (2020). https://doi.org/10.1109/TCYB.2020.2965140

    Article  Google Scholar 

  41. A. Thabet, M. Boutayeb, M.N. Abdelkrim, Real-time fault-voltage estimation for nonlinear dynamic power systems. Int. J. Adapt. Control Signal Process. 30, 284 (2016). https://doi.org/10.1002/acs.2592

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Vafamand, M.M. Arefi, A. Khayatian, Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans. 74, 134 (2018). https://doi.org/10.1016/j.isatra.2018.02.005

    Article  Google Scholar 

  43. A. Valade, P. Acco, P. Grabolosa, J.Y. Fourniols, A study about Kalman filters applied to embedded sensors. Sensors 17(12), 2810 (2017). https://doi.org/10.3390/s17122810

    Article  Google Scholar 

  44. B. Vaseghi, S. Mobayen, S.S. Hashemi, A. Fekih, Fast Reaching Finite Time synchronization Approach for Chaotic Systems With Application in Medical Image Encryption. IEEE Access 9, 25911–25925 (2021). https://doi.org/10.1109/ACCESS.2021.3056037

    Article  Google Scholar 

  45. B. Vaseghi, M.A. Pourmina, S. Mobayen, Finite-time chaos synchronization and its application in wireless sensor networks. Trans. Inst. Meas. Control. (2018). https://doi.org/10.1177/0142331217731617

    Article  MATH  Google Scholar 

  46. E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373) (IEEE, Lake Louise, Alta., Canada, 2000), pp. 153–158

  47. H. Wang, Y. Kang, L. Yao, H. Wang, Z. Gao, Fault diagnosis and fault tolerant control for TS fuzzy stochastic distribution systems subject to sensor and actuator faults. IEEE Trans. Fuzzy Syst (2020). https://doi.org/10.1109/TFUZZ.2020.3024659

    Article  Google Scholar 

  48. M. Wang, T. Liang, Adaptive Kalman filtering for sensor fault estimation and isolation of satellite attitude control based on descriptor systems. Trans. Inst. Meas. Control 41, 1686 (2019)

    Article  Google Scholar 

  49. M. Xiao, Y. Zhang, H. Fu, Three-stage unscented Kalman filter for state and fault estimation of nonlinear system with unknown input. J Frankl Inst. 354, 8421 (2017). https://doi.org/10.1016/j.jfranklin.2017.09.031

    Article  MathSciNet  MATH  Google Scholar 

  50. K. Xiong, H.Y. Zhang, C.W. Chan, Performance evaluation of UKF-based nonlinear filtering. Automatica 42, 261 (2006). https://doi.org/10.1016/j.automatica.2005.10.004

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Yin, P. Shi, F. Liu, K.L. Teo, A novel approach to fault detection for fuzzy stochastic systems with nonhomogeneous processes. Inf Sci. 292, 198 (2015). https://doi.org/10.1016/j.ins.2014.08.055

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Zhang, J. Han, Y. Wang, X. Liu, Sensor fault estimation of switched fuzzy systems with unknown input. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2704543

    Article  Google Scholar 

  53. K. Zhang, B. Jiang, M. Staroswiecki, Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18, 194 (2010). https://doi.org/10.1109/TFUZZ.2009.2036005

    Article  Google Scholar 

  54. K. Zhang, G. Liu, B. Jiang, Robust unknown input observer-based fault estimation of leader–follower linear multi-agent systems. Circuits Syst Signal Process 36, 525 (2017)

    Article  Google Scholar 

  55. W. Zhang, Z. Wang, T. Raïssi, Y. Wang, Y. Shen, A state augmentation approach to interval fault estimation for descriptor systems. Eur. J. Control. 51, 19 (2020)

    Article  MathSciNet  Google Scholar 

  56. D. Zhao, H.K. Lam, Y. Li, S.X. Ding, S Liu, A novel approach to state and unknown input estimation for Takagi–Sugeno fuzzy models with applications to fault detection. IEEE Trans Circuits Syst I Regul Pap 67(6) (2020). https://doi.org/10.1109/TCSI.2020.2968732

  57. S.H.S. Ziyabari, M.A. Shoorehdeli, Robust fault diagnosis scheme in a class of nonlinear system based on UIO and fuzzy residual. Int. J. Control Autom. Syst. 15, 1145 (2017). https://doi.org/10.1007/s12555-016-0145-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Aliyari Shoorehdeli.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

According to [2, 43], the computational complexity for the proposed filter algorithm can be expressed in Table 4, where \({n}_{a}\), \(p\), and \(m\) are the sizes of the augmented state, input, and output. \(r\) is the number of fuzzy rules.

Appendix B

In this Sect., \({\lambda }_{k}\) and \({\mu }_{max}\) are employed to get Lemma 3. Now, by definition \({\lambda }_{k}\) is given as follows:

$$ \begin{gathered} \lambda _{{k + 1}} = \tilde{X}_{k} ^{T} \\ \left[ \begin{gathered} \mathop \sum \limits_{{i = 1}}^{r} h_{i} \left( \theta \right)\left( {\alpha _{{i,k}} F_{{i,k}} } \right)^{T} \left[ \begin{gathered} \left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right) \hfill \\ - \left( {\beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \left( {\Theta _{{k + 1}} \hat{P}_{{X_{{k + 1,k}} }} \Theta _{{k + 1}} ^{T} + \hat{R}_{{k + 1}} } \right)^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} \hfill \\ \end{gathered} \right]\left( {\alpha _{{i,k}} F_{{i,k}} } \right) \hfill \\ + \left( {r - 1} \right)\hat{P}_{{X_{k} }} ^{{ - 1}} \hfill \\ \end{gathered} \right] \\ \tilde{X}_{k} /V_{k} \left( {\tilde{X}_{k} } \right) \end{gathered}$$
(52)

According to conditions (36) and (37), the following matrix inequality is obtained:

$$\sum_{i=1}^{r}{h}_{i}\left(\theta \right){\left({\alpha }_{i,k}{F}_{i,k}\right)}^{T}\left[{\left({\Theta }_{k+1}-{\beta }_{k+1}{H}_{k+1}\right)}^{T}{{\widehat{R}}_{k+1}}^{-1} \left({\Theta }_{k+1}-{\beta }_{k+1}{H}_{k+1}\right)\right]\left({\alpha }_{i,k}{F}_{i,k}\right)\ge 0$$
(53)

\({\lambda }_{min}\) is chosen by Assumptions 1 and 2, and using (11) and (25):

$$ \begin{gathered} \lambda _{{k + 1}} V_{k} \left( {\tilde{X}_{k} } \right) \ge \lambda _{{\min }} V_{k} \left( {\tilde{X}_{k} } \right) \hfill \\ \triangleq \tilde{X}_{k} ^{T} \left[ \begin{gathered} \left( {r - 1} \right)p_{{\max }} ^{{ - 1}} \hfill \\ - \mathop \sum \limits_{{i = 1}}^{r} h_{i} \left( \theta \right)\alpha _{{i,\max }} ^{2} .f_{{i,\max }} ^{2} \beta _{{\max }} ^{2} .h_{{\max }} ^{2} \left( \begin{gathered} \mathop \sum \limits_{{j = 1}}^{r} h_{j} \left( \theta \right)\theta _{{\min }} ^{2} .p_{{\min }} .\alpha _{{j,\min }} ^{2} .f_{{j,\min }} ^{2} \hfill \\ + \theta _{{\min }} ^{2} .\hat{q}_{{j,\min }} + \hat{r}_{{\min }} \hfill \\ \end{gathered} \right)^{{ - 1}} \hfill \\ \end{gathered} \right]\tilde{X}_{k} \ge 0 \hfill \\ \end{gathered} $$
(54)

With respect to (34), the following condition must also be confirmed:

$${\lambda }_{k+1}{V}_{k}\left({\tilde{X }}_{k}\right)-{V}_{k}\left({\tilde{X }}_{k}\right)<0\to {\lambda }_{k+1}<1$$
(55)

Therefore,

$$ \begin{gathered} \lambda _{{k + 1}} V_{k} \left( {\tilde{X}_{k} } \right) - V_{k} \left( {\tilde{X}_{k} } \right) \hfill \\ = \tilde{X}_{k} ^{T} \left[ {\mathop \sum \limits_{{i = 1}}^{r} h_{i} \left( \theta \right)\left( {\alpha _{{i,k}} F_{{i,k}} } \right)^{T} \left[ \begin{gathered} \left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right) \hfill \\ - \left( {\beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \left( {\Theta _{{k + 1}} \hat{P}_{{X_{{_{{k + 1\left| k \right.}} }} }} \Theta _{{k + 1}} ^{T} + \hat{R}_{{k + 1}} } \right)^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} \hfill \\ \end{gathered} \right]}\right. \\ \left.{\vphantom{\left[ \begin{gathered} \left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\left( {\Theta _{{k + 1}} - \beta _{{k + 1}} H_{{k + 1}} } \right) \hfill \\ - \left( {\beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \left( {\Theta _{{k + 1}} \hat{P}_{{X_{{_{{k + 1\left| k \right.}} }} }} \Theta _{{k + 1}} ^{T} + \hat{R}_{{k + 1}} } \right)^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} \hfill \\ \end{gathered} \right]}\left( {\alpha _{{i,k}} F_{{i,k}} } \right) + \left( {r - 2} \right)\hat{P}_{{X_{{_{k} }} }} ^{{ - 1}} } \right]\tilde{X}_{k} \hfill \\ \end{gathered} $$
(56)

For (56), derived from conditions (36) and (37), we obtain

$$ \begin{gathered} \lambda _{{k + 1}} V_{k} \left( {\tilde{X}_{k} } \right) - V_{k} \left( {\tilde{X}_{k} } \right) \hfill \\ \le \tilde{X}_{k} ^{T} \left[ {\mathop \sum \limits_{{i = 1}}^{r} h_{i} \left( \theta \right)\alpha _{{i,\min }} ^{2} .f_{{i,\min }} ^{2} \left[ \begin{gathered} \left( {\theta _{{\max }} - \beta _{{\min }} .h_{{\min }} } \right)^{2} \hat{r}_{{\min }} ^{{ - 1}} \hfill \\ - \beta _{{\min }} ^{2} .h_{{\min }} ^{2} \left( {\mathop \sum \limits_{{j = 1}}^{r} h_{j} \left( \theta \right)\left( \begin{gathered} \theta _{{\max }} ^{2} .p_{{\max }} .\alpha _{{j,\max }} ^{2} .f_{{j,\max }} ^{2} \hfill \\ + \theta _{{\max }} ^{2} .\hat{q}_{{j,\max }} + \hat{r}_{{\max }} \hfill \\ \end{gathered} \right)} \right)^{{ - 1}} \hfill \\ \end{gathered} \right] + \left( {r - 2} \right)p_{{\min }} ^{{ - 1}} } \right]\tilde{X}_{k} < 0 \hfill \\ \end{gathered} $$
(57)

From (54) and (57), we get \(0\le {\lambda }_{k+1}<1\).

Now, from (42), including noises \({{\omega }_{eq}}_{k}\) and \({\vartheta }_{k+1}\), and (29), \({\mu }_{k+1}\) will be:

$$ \begin{aligned} \mu _{{k + 1}} & = E\left\{ \begin{gathered} \omega _{{eq_{k} }} ^{T} \left[ \begin{gathered} \left( {\beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\Theta _{{k + 1}} \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} \hfill \\ - \left( {\beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\Theta _{{k + 1}} \hat{P}_{{X_{{k + 1}} }} - \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} + \hat{P}_{{X_{{k + 1}} }} ^{{ - 1}} \hfill \\ \end{gathered} \right]\omega _{{eq_{k} }} \hfill \\ + \vartheta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} ~\Theta _{{k + 1}} \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \vartheta _{{k + 1}} \hfill \\ \end{gathered} \right\} \\ & = E\left\{ \begin{gathered} \omega _{{eq_{k} }} ^{T} \left( {I - \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \left( {\hat{P}_{{X_{{k + 1}} }} } \right)^{{ - 1}} ~\left( {I - \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} } \right)\omega _{{eq_{k} }} \hfill \\ + \vartheta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \Theta _{{k + 1}} \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}} ^{T} \hat{R}_{{k + 1}} ^{{ - 1}} \vartheta _{{k + 1}} \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$
(58)

Knowing that \(tr\left(A+B\right)=tr\left(A\right)+tr(B)\) and Eq. (58) is scalar, traces are taken on both sides of (58)

$$ \begin{aligned} \mu _{{k + 1}} & = ~E\left\{ \begin{gathered} tr\left[ {\left( {I - \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}}^{T} \hat{R}_{{k + 1}}^{T} \beta _{{k + 1}} H_{{k + 1}} } \right)^{T} \left( {\hat{P}_{{X_{{k + 1}} }} } \right)^{{ - 1}} ~\left( \begin{gathered} I \hfill \\ - \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}}^{T} \hat{R}_{{k + 1}}^{{ - 1}} \beta _{{k + 1}} H_{{k + 1}} \hfill \\ \end{gathered} \right)} \right]Q_{{eq_{k} }} \hfill \\ + tr\left( {\hat{R}_{{k + 1}}^{{ - 1}} \Theta _{{k + 1}} \hat{P}_{{X_{{k + 1}} }} \Theta _{{k + 1}}^{T} \hat{R}_{{k + 1}}^{{ - 1}} } \right)R_{{k + 1}} \hfill \\ \end{gathered} \right\} \\ & \le \left\{ {\frac{{q_{{\max }} \left( {\hat{r}_{{\max }} - p_{{\min }} .\theta _{{\min }} .\beta _{{\min }} .h_{{\min }} } \right)^{2} }}{{p_{{\min }} .\hat{r}_{{\max }}^{2} }}L + \frac{{\theta _{{\max }} ^{2} .p_{{\max }} .r_{{\max }} }}{{\hat{r}_{{\min }}^{2} }}M} \right\} \\ \,\mathop = \limits^{\Delta } \mu _{{\max }} \\ \end{aligned} $$
(59)

Appendix C

This appendix presents the proof of Theorem 2.

Proof

For each fuzzy set, inserting (28) and (29) in (25) and rearranging the terms, we obtain

$$ \hat{P}_{{X_{{_{{\left. {i,k + 1} \right|k}} }} }} = \alpha_{i,k} F_{i,k} \left[ {\hat{P}_{{X_{{_{\left. k \right|k - 1} }} }} - \hat{P}_{{X_{{_{\left. k \right|k - 1} }} }} \Theta_{k}^{T} \left[ {\Theta_{k} \hat{P}_{{X_{{_{\left. k \right|k - 1} }} }} \Theta_{k}^{T} + \hat{R}_{k} } \right]^{ - 1} \Theta_{k} \hat{P}_{{X_{{_{\left. k \right|k - 1} }} }} } \right]F_{i,k}^{T} \alpha_{i,k} + \hat{Q}_{{eq_{{_{k} }} }} $$
(60)

By definition \(\Psi = \Theta_{k} \hat{P}_{{X_{\left. k \right|k - 1} }} \Theta_{k}^{T}\) and\(\Upsilon={\widehat{R}}_{k}\), and applying Lemma 4:

$$ \hat{P}_{{X_{{\left. {i,k + 1} \right|k}} }} \le \alpha_{i,k} F_{i,k} \left[ {\Theta_{k}^{ - 1} \hat{R}_{k} \Theta_{k}^{ - T} } \right]F_{i,k}^{T} \alpha_{i,k} + \hat{Q}_{{eq_{k} }} $$
(61)

Using Assumptions 1 and 2 for the upper bound (61), we obtain

$$ \hat{P}_{{X_{{_{{\left. {i,k + 1} \right|k}} }} }} \le \theta_{\min }^{ - 2} .\hat{r}_{\max } .\alpha_{i,\max }^{2} .f_{i,\max }^{2} + \hat{q}_{\max } I \triangleq \widehat{{p_{i} }}I $$
(62)

The upper bound of \(\hat{P}_{{X_{{\left. {i,k + 1} \right|k}} }}\) is shown in (62). From (31) and Lemma 2, we obtain

$$ \hat{P}_{{X_{{_{k + 1} }} }} \le \hat{P}_{{X_{{_{{\left. {k + 1} \right|k}} }} }} \le \mathop \sum \limits_{i = 1}^{r} h_{i} \left( {\theta \left( {u,y} \right)} \right)\widehat{{p_{i} }}I $$
(63)

From \({h}_{i}\left(\theta \left(u,y\right)\right)\ge 0\), (18) and (63), the following is obtained:

$$ E\left\{ {\hat{P}_{{X_{{_{k + 1} }} }} } \right\} \le E\left\{ {\mathop \sum \limits_{i = 1}^{r} h_{i} \left( {\theta \left( {u,y} \right)} \right)\widehat{{p_{i} }}I} \right\} \triangleq {\mathcal{P}}_{\max } I $$
(64)

Thus, from Theorem 2, the upper bound \({\mathcal{P}}_{max}\) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheydaeian Arani, A.A., Aliyari Shoorehdeli, M., Moarefianpour, A. et al. State and Fault Estimation for T–S Fuzzy Nonlinear Systems Using an Ensemble UKF. Circuits Syst Signal Process 41, 2566–2594 (2022). https://doi.org/10.1007/s00034-021-01897-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01897-1

Keywords

Navigation