Skip to main content
Log in

FPGA-Based Low-Cost Architecture for R-Peak Detection and Heart-Rate Calculation Using Lifting-Based Discrete Wavelet Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper focuses on designing a field-programmable gate array (FPGA)-based architecture for R-peak detection and heart rate calculation using lifting-based discrete wavelet transform (DWT). An efficient and low-cost architecture for Daubechies 4 lifting-based DWT for a decomposition level of four is also proposed. The proposed architecture is folded after the first decomposition level to avoid repetitive blocks for different decomposition levels. The noise-removal and preprocessing of the electrocardiogram (ECG) signals are carried out using lifting-based DWT. The 16-bit fixed-point representation is employed throughout the design to reduce the hardware complexity. The entire design is evaluated in both MATLAB R2020a and XILINX VIVADO 2017.4. The proposed architecture is validated using three ECG databases, namely the MIT-BIH arrhythmia, the MIT-BIH supraventricular, and the QT database. A total of 122 distinct ECG datasets are tested on FPGA to determine the effectiveness of the proposed R-peak detection architecture. The R-peaks detected using the proposed technique show no noticeable error with respect to actual R-peaks. The FPGA implementation is performed using the Artix-7 board that utilizes 2197 LUTs and 486 flip-flops at an operating frequency of 44 MHz. The proposed architecture achieves sensitivity, accuracy, positive predictivity, and detection rate of 99.52, 99.43, 99.91, and 0.565%, respectively, in MATLAB, and 99.44, 98.88, 99.43, and 1.09%, respectively, in FPGA. In terms of both hardware utilization and R-peak detection rate achieved, the proposed architecture is suitable to use as a part of low-cost smart biomedical devices to perform continuous monitoring of ECG signals and automatic detection of heart rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The ECG records are available online at Physionet ATM: (https://archive.physionet.org/cgi-bin/atm/ATM).

Code Availability

https://github.com/anushkagon11/MATLAB_Code_for_ECG_R_Peak_Detection.git

References

  1. K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Processing 50, 966–977 (2002). https://doi.org/10.1109/78.992147

    Article  Google Scholar 

  2. B.M. Asan, S.K.N. Mahammad, An efficient VLSI architecture for lifting based 1D/2D discrete wavelet transform. Microprocess. Microsyst. 47, 404–418 (2016). https://doi.org/10.1016/j.micpro.2016.08.007

    Article  Google Scholar 

  3. S. Balambigai, R. Asokan, R. Kamalakannan, Performance comparison of wavelet and multiwavelet denoising methods for an electrocardiogram signal. J Appl Math. (2014). https://doi.org/10.1155/2014/241540

    Article  Google Scholar 

  4. D. Berwal, A. Kumar, Y. Kumar, Design of high performance QRS complex detector for wearable healthcare devices using biorthogonal spline wavelet transform. ISA Trans. 81, 222–230 (2018). https://doi.org/10.1016/j.isatra.2018.08.002

    Article  Google Scholar 

  5. A. Chakraborty, A. Banerjee, A memory and area-efficient distributed arithmetic based modular VLSI architecture of 1D/2D reconfigurable 9/7 and 5/3 DWT filters for real-time image decomposition. J. Real-Time Image Proc. 17, 1421–1446 (2020). https://doi.org/10.1007/s11554-019-00901-x

    Article  Google Scholar 

  6. R.C.H. Chang, C.H. Lin, M.F. Wei, K.H. Lin, S.R. Chen, High-precision real-time premature ventricular contraction (PVC) detection system based on wavelet transform. J. Signal Process. Syst. 77, 289–296 (2014). https://doi.org/10.1007/s11265-013-0823-6

    Article  Google Scholar 

  7. I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4, 245–267 (1998). https://doi.org/10.1007/BF02476026

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdroff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, Components of a new research resource for complex physiologic signals. Circulation 101, E215–E220 (2000). https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  9. A. Gon, A. Mukherjee, in Removal of noises from an ECG signal using an adaptive S-median thresholding technique. IEEE Conference on Applied Signal Processing (APSCON), (2020) pp. 89–93. https://doi.org/10.1109/ASPCON49795.2020.9276706

  10. A. Graps, An introduction to wavelets. IEEE Comp. Sci. Engi. 2, 50–61 (1995). https://doi.org/10.1109/99.388960

    Article  Google Scholar 

  11. A. E. Hassen, A. Histace, M. Terosiet, O. Romain, in FPGA-based detection of QRS complexes in ECG signal, Conference on Design and Architectures for Signal and Image Processing (DASIP), (2015) pp. 1–7. https://doi.org/10.1109/DASIP.2015.7367244

  12. L. Hongyu, M.K. Mandal, B.F. Cockburn, Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52, 1315–1326 (2004). https://doi.org/10.1109/TSP.2004.826175

    Article  MathSciNet  MATH  Google Scholar 

  13. M.A. Hongyu, K.A. Wahid, Area- and power-efficient design of Daubechies wavelet transforms using folded AIQ mapping. IEEE Trans. Circuits Syst. II Express Briefs 57, 716–720 (2010). https://doi.org/10.1109/TCSII.2010.2056111

    Article  Google Scholar 

  14. M. Janveja, G. Trivedi, An area and power efficient VLSI architecture for ECG feature extraction for wearable IoT healthcare applications. Integration 82, 96–103 (2022). https://doi.org/10.1016/j.vlsi.2021.09.006

    Article  Google Scholar 

  15. A. Kashani, B.S. Serge, Significance of QRS complex duration in patients with heart failure. J. Am. Coll. Cardiol. 46, 2183–2192 (2005). https://doi.org/10.1016/j.jacc.2005.01.071

    Article  Google Scholar 

  16. A. Kumar, R. Komaragiri, M. Kumar, Design of wavelet transform based electrocardiogram monitoring system. ISA Trans. 80, 381–398 (2018). https://doi.org/10.1016/j.isatra.2018.08.003

    Article  Google Scholar 

  17. A. Kumar, M. Kumar, R. Komaragiri, Design of a biorthogonal wavelet transform based R-peak detection and data compression scheme for implantable cardiac pacemaker systems. J. Med. Syst. (2018). https://doi.org/10.1007/s10916-018-0953-2

    Article  Google Scholar 

  18. P. Laguna, R.G. Mark, A.L. Goldberger, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Comput. Cardiol. 24, 673–676 (1997). https://doi.org/10.1109/CIC.1997.648140

    Article  Google Scholar 

  19. C. Lian, K. Chen, H. Chen, L. Chen, in Lifting based discrete wavelet transform architecture for JPEG2000, IEEE International Symposium on Circuits and Systems (ISCAS) (2001), pp. 445–448. https://doi.org/10.1109/ISCAS.2001.921103

  20. X. Luo, L. Feng, H. Xun, Y. Zhang, Y. Li, L. Yin, Rinegan: a scalable image processing architecture for large scale surveillance applications. Front. Neurorobot. (2021). https://doi.org/10.3389/fnbot.2021.648101

    Article  Google Scholar 

  21. A.K. Madam, K.M. Chari, Efficient FPGA based VLSI architecture for detecting R-peaks in Electrocardiogram (ECG) signal by combining Shannon energy with Hilbert transform. IET Signal Proc. 12, 748–745 (2012). https://doi.org/10.1049/iet-spr.2017.0201

    Article  Google Scholar 

  22. S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  23. K. Meddah, M.K. Talha, B. Mohammed, H. Zairi, FPGA-based system for heart rate monitoring. IET Circuits Devices Syst. 13, 771–782 (2019). https://doi.org/10.1049/iet-cds.2018.5204

    Article  Google Scholar 

  24. G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. Q. Mag. Eng. Med. Biol. Soc. 20, 45–50 (2001). https://doi.org/10.1109/51.932724

    Article  Google Scholar 

  25. F. Morshedlou, N. Ravanshad, H. Rezaee-Dehsorkh, An ultra-low power analog QRS-detection circuit for ambulatory ECG monitoring. AEU-Int. J. Electron. C. (2021). https://doi.org/10.1016/j.aeue.2020.153551

    Article  Google Scholar 

  26. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985). https://doi.org/10.1109/TBME.1985.325532

    Article  Google Scholar 

  27. D. Panigrahy, M. Rakshit, P.K. Sahu, FPGA implementation of heart rate monitoring system. J. Med. Syst. 40, 1–12 (2016). https://doi.org/10.1007/s10916-015-0410-4

    Article  Google Scholar 

  28. R. Pinto, K. Shama, An efficient architecture for modified lifting-based discrete wavelet transform. Sens. Imaging (2020). https://doi.org/10.1007/s11220-020-00317-z

    Article  Google Scholar 

  29. K.L.V. Rajani, S.Y. Padma, N. Balaji, K. Viswada, FPGA based arrhythmia detection. Procedia Comput. Sci. 57, 970–979 (2015). https://doi.org/10.1016/j.procs.2015.07.495

    Article  Google Scholar 

  30. S. Sarkar, in An efficient high-speed lifting based 1D/2D-DWT VLSI architecture using CDF-5/3 wavelet transform for image processing applications, IEEE International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), (2021). https://doi.org/10.1109/RTEICT49044.2020.9315649

  31. M. V. Subbarao, P. Samundiswary, in Time-frequency analysis of non-stationary signals using frequency slice wavelet transform, 10th International Conference on Intelligent Systems and Control (ISCO), (2016) pp. 1–6. https://doi.org/10.1109/ISCO.2016.7726999

  32. W. Sweldens, in The lifting scheme: a new philosophy in biorthogonal wavelet constructions. Proceedings of the SPIE (Wavelet Applications in Signal Proc. III) 2569, (1995) pp. 68–79. https://doi.org/10.1117/12.217619

  33. S. Talukder, R. Singh, S. Bora, R. Paily, An efficient architecture for QRS detection in FPGA using integer Haar wavelet transform. Circuits Syst. Signal Process. 39, 3610–3625 (2020). https://doi.org/10.1007/s00034-019-01328-2

    Article  Google Scholar 

  34. C. Wang, W.S. Gan, Efficient VLSI Architecture for lifting-based discrete wavelet packet transform. IEEE Trans. Circuits Syst. II Express Briefs 54, 422–426 (2007). https://doi.org/10.1109/TCSII.2007.892410

    Article  Google Scholar 

  35. S. Yang, B. Deng, J. Wang, H. Li, M. Lu, Y. Che, X. Wei, K.A. Loparo, Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2019.2899936

    Article  Google Scholar 

  36. S. Yang, T. Gao, J. Wang, B. Deng, M.R. Azghadi, T. Lei, B. Linares-Barranco, SAM: a unified self-adaptive multicompartmental spiking neuron model for learning with working memory. Front. Neurosci. (2022). https://doi.org/10.3389/fnins.2022.850945

    Article  Google Scholar 

  37. S. Yang, T. Gao, J. Wang, B. Deng, B. Lansdell, B. Linares-Barranco, Efficient spike-driven learning with dendritic event-based processing. Front. Neurosci. (2021). https://doi.org/10.3389/fnins.2021.601109

    Article  Google Scholar 

  38. S. Yang, J. Tan, B. Chen, Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion. Entropy (2022). https://doi.org/10.3390/e24040455

    Article  MathSciNet  Google Scholar 

  39. S. Yang, J. Wang, B. Deng, M.R. Azghadi, B. Linares-Barranco, Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3084250

    Article  Google Scholar 

  40. S. Yang, J. Wang, N. Zhang, B. Deng, Y. Pang, M.R. Azghadi, CerebelluMorphic: large-scale neuromorphic model and architecture for supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3057070

    Article  Google Scholar 

  41. H. Zairi, M.K. Talha, K. Meddah, S.O. Slimane, FPGA-based system for artificial neural network arrhythmia classification. Neural Comput. Appl. 32, 4105–4120 (2020). https://doi.org/10.1007/s00521-019-04081-4

    Article  Google Scholar 

  42. H. Zhang, An improved QRSWave group detection algorithm and Matlab implementation. In Phys. Procedia 25, 1010–1016 (2012). https://doi.org/10.1016/j.phpro.2012.03.192

    Article  Google Scholar 

  43. B. Zhang, L. Sieler, Y. Morère, B. Bolmont, G. Bourhis, A modified algorithm for QRS complex detection for FPGA implementation. Circuits Syst. Signal Process. 37, 3070–3092 (2018). https://doi.org/10.1007/s00034-017-0711-6

    Article  MathSciNet  Google Scholar 

  44. Z. Zhang, Q. Yu, Q. Zhang, N. Ning, L. Jing, A kalman filtering based adaptive threshold algorithm for QRS complex detection. Biomed. Signal Process. Control (2020). https://doi.org/10.1016/j.bspc.2019.101827

    Article  Google Scholar 

  45. Z. Zidelmal, A. Amirou, M. Adnane, A. Belouchrani, QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 107, 490–496 (2012). https://doi.org/10.1016/j.cmpb.2011.12.004

    Article  Google Scholar 

Download references

Funding

The work is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equally contributed to the submitted work.

Corresponding author

Correspondence to Anusaka Gon.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gon, A., Mukherjee, A. FPGA-Based Low-Cost Architecture for R-Peak Detection and Heart-Rate Calculation Using Lifting-Based Discrete Wavelet Transform. Circuits Syst Signal Process 42, 580–600 (2023). https://doi.org/10.1007/s00034-022-02148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02148-7

Keywords

Navigation