Skip to main content
Log in

Intelligent ECG Signal Filtering Method Based on SVM Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a novel and robust automatic electrocardiogram (ECG) filtering system. The proposed filtering system allows an automatic selection of the adequate filter by applying the support vector machine (SVM). The SVM classification is based on an electrocardiogram feature vector that integrates four main input characteristics (maximum and minimum amplitudes, maximum frequency and power spectral density). This paper provides ECG denoising efficiency based on the automatic selection of three different competing filtering methods: the discrete wavelet transform (DWT), empirical mode decomposition (EMD) and the extended Kalman filter (EKF). The extensive simulations are performed by using the MIT-BIH database. The effectiveness of the proposed system is evaluated in term of signal-to-noise ratio (SNR) improvement in decibel (dB). The results showed that the proposed automatic ECG filtering system provided a better signal-to-noise ratio compared to the DWT, EMD or EKF algorithm alone. Therefore, an implementation of the proposed filtering system on graphical processing units (GPU) was realized to optimize execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset used in this article is available in ECG database at https://archive.physionet.org/physiobank/database/#ecg

References

  1. M. Blanco-Velasco, B. Weng, K.E. Barner, ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1), 1–13 (2008). https://doi.org/10.1016/j.compbiomed.2007.06.003

    Article  Google Scholar 

  2. K.M. Chang, Arrhythmia ECG noise reduction by ensemble empirical mode decomposition. Sensors (Basel) 10(6), 6063–6080 (2010). https://doi.org/10.3390/s100606063

    Article  Google Scholar 

  3. K.M. Chang, S.H. Liu, Gaussian noise filtering from ECG by wiener filter and ensemble empirical mode decomposition. J. Signal Process. Syst. 64(2), 249–264 (2011). https://doi.org/10.1007/s11265-009-0447-z

    Article  Google Scholar 

  4. P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112–114 (2004)

    Article  Google Scholar 

  5. A. Goldberger, L. Amaral, L. Glass, J.M. Hausdorff, P. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). (Circulation electronic pages)

    Article  Google Scholar 

  6. R. Hostettler, W. Birk, M.L. Nordenvaad, Extended kalman filter for vehicle tracking using road surface vibration measurements, in Proceedings on IEEE 51st IEEE Conference on Decision and Control, Maui, HI, USA (2012), pp. 5643–5648

  7. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Jenitta, A. Rajeswari, Denoising of ECG signal based on improved adaptive filter with EMD and EEMD, in 2013 IEEE Conference on Information & Communication Technologies, Thuckalay, Tamil Nadu, India (2013), pp. 957–962. https://doi.org/10.1109/CICT.2013.6558234

  9. M. Kania, M. Fereniec, R. Maniewski, Wavelet denoising for multilead high resolution ECG signals. Meas. Sci. Rev. 7(4), 30–33 (2007)

    Google Scholar 

  10. H. Kaur, R. Ni, ECG signal denoising with Savitzky–Golay, filter and discrete wavelet transform (DWT). Int. J. Eng. Trends Technol. 36(5), 266–269 (2016). https://doi.org/10.14445/22315381/IJETT-V36P249

    Article  Google Scholar 

  11. K. S. Kumar, B. Yazdanpanah, P. R. Kumar, Removal of noise from electrocardiogram using digital FIR and IIR filters with various methods, in International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India (2015), pp. 157–162

  12. M. Kumar, R.B. Pachori, U.R. Acharya, Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19(9), 488 (2017). https://doi.org/10.3390/e19090488

    Article  Google Scholar 

  13. C. Lastre-Domínguez, Y.S. Shmaliy, O. Ibarra-Manzano, J. Munoz-Minjares, L.J. Morales-Mendoza, ECG signal denoising and features extraction using unbiased FIR smoothing. Biomed. Res. Int. (2019). https://doi.org/10.1155/2019/2608547

    Article  Google Scholar 

  14. D. Li, Z. Liang, L.J. Voss, J.W. Sleigh, Analysis of depth of anesthesia with Hilbert–Huang spectral entropy. Clin. Neurophysiol. 119(11), 2465–2475 (2008). https://doi.org/10.1016/j.clinph.2008.08.006

    Article  Google Scholar 

  15. J. Li, G. Deng, W. Wei, H. Wang, Z. Ming, Design of a real-time ECG filter for portable mobile medical systems. IEEE Access 5, 696–704 (2017)

    Article  Google Scholar 

  16. Q. Li, R. Li, K. Ji, W. Dai, Kalman filter and its application, in Proceedings on 8th International Conference on Intelligent Networks and Intelligent Systems, Tianjin, China (2015), pp. 74–77

  17. S. Z. Mahmoodabadi, A. Ahmadian, M.D. Abolhasani, ECG feature extraction using Daubechies wavelets, in Proceeding of the Fifth IASTED International Conference VISUALIZATION, Spain (2005), pp. 343–348

  18. A. Mert, A. Akan, Seizure onset detection based on frequency domain metric of empirical mode decomposition. Signal Image Video Process. 12(8), 1489–1496 (2018). https://doi.org/10.1007/s11760-018-1304-y

    Article  Google Scholar 

  19. J. Mielniczuk, P. Wojdyłło, Estimation of Hurst exponent revisited. Comput. Stat. Data Anal. 51(9), 4510–4525 (2007). https://doi.org/10.1016/j.csda.2006.07.033

    Article  MathSciNet  MATH  Google Scholar 

  20. G.B. Moody, W.E. Muldrow, R.G. Mark, A noise stress test for arrhythmia detectors. Comput. Cardiol. 11, 381–384 (1984)

    Google Scholar 

  21. I. Nouira, A. Ben Abdallah, M.H. Bedoui, M. Dogui, A robust R peak detection algorithm using wavelet transform for heart rate variability studies. Int. J. Electr. Eng. Inform. 5(3), 270–284 (2013)

    Google Scholar 

  22. M.A. Ouali, K. Chafaa, M. Ghanai, L. E Moreno, D.B. Rojas, ECG denoising using extended Kalman filter, in 2013 International Conference on Computer Applications Technology, Sousse, Tunisia (2013). https://doi.org/10.1109/ICCAT.2013.6521994

  23. P. Phukpattaranont, Improvement of signal to noise ratio (SNR) in ECG signals based on dual-band continuous wavelet transform, in Signal and Information Processing Association Annual Summit and Conference, Asia-Pacific, Siem Reap, Cambodia (2014), pp. 1–4

  24. S. Poungponsri, X. Hua Yu, An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing 117, 206–213 (2013). https://doi.org/10.1016/j.neucom.2013.02.010

    Article  Google Scholar 

  25. M.Z.U. Rahman, R.A. Shaik, D.V. Rama Koti Reddy, Efficient sign based normalized adaptive filtering techniques for cancelation of artifacts in ECG signals: application to wireless biotelemetry. Signal Process. 91(2), 225–239 (2011). https://doi.org/10.1016/j.sigpro.2010.07.002

    Article  MATH  Google Scholar 

  26. B. Richhariya, M. Tanveer, EEG signal classification using universum support vector machine. Expert Syst. Appl. 106, 169–182 (2008). https://doi.org/10.1016/j.eswa.2018.03.053

    Article  Google Scholar 

  27. D. Salmond, Target tracking: introduction and Kalman tracking filters, in Proceedings on IEE Workshop Target Tracking: Algorithms and Applications (Ref. No. 2001/174), Enschede, Netherlands (2001), pp. 1–16

  28. M. Shahbakhti, A novel DWT method for ECG noise elimination. IEEJ Trans. Electr. Electron. Eng. 10(3), 353–355 (2015). https://doi.org/10.1002/tee.22093

    Article  Google Scholar 

  29. K. Takeuchi, N. Collier, Bio-medical entity extraction using support vector machines. Artif. Intell. Med. 33(2), 125–137 (2005). https://doi.org/10.1016/j.artmed.2004.07.019

    Article  Google Scholar 

  30. M.M. Tantawi, K. Revett, A.B. Salem, M.F.A. Tolba, wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition. Signal Image Video Process. 9(6), 1271–1280 (2015). https://doi.org/10.1007/s11760-013-0568-5

    Article  Google Scholar 

  31. A.K. Verma, I. Saini, B.S. Saini, Alexander fractional differential window filter for ECG denoising. Australas. Phys. Eng. Sci. Med. 41(2), 519–539 (2018). https://doi.org/10.1007/s13246-018-0642-y

    Article  Google Scholar 

  32. R. Vullings, B. de Vries, J.W.M. Bergmans, An adaptive Kalman filter for ECG signal enhancement. IEEE Trans. Biomed. Eng. 58(4), 1094–1103 (2010). https://doi.org/10.1109/TBME.2010.2099229

    Article  Google Scholar 

  33. G. Wahyudi, M.I. Fanany, W. Jatmiko, A. Murni Arymurthy, SVM kernels accuracy and generalization capability on Apnea detection from ECG, in International Conference 2010 Information Systems (2010), pp. 187–191. https://doi.org/10.13140/RG.2.1.4573.8325

  34. L. Wang, J. Li, R. Zhu, L. Xu, Y. He, R. Zhang, S. Rao, A novel stepwise support vector machine (SVM) method based on optimal feature combination for predicting miRNA precursors. Afr. J. Biotechnol. 10(74), 16720–16731 (2011). https://doi.org/10.5897/AJB11.2273

    Article  Google Scholar 

  35. Z. Wang, Adaptive Fourier decomposition based ECG denoising. Comput. Biol. Med. 77(Supplement C), 195–205 (2016). https://doi.org/10.1016/j.compbiomed.2016.08.013

    Article  Google Scholar 

  36. H. Xiao, Z. Xiao, N. Zhang, Removal of baseline wander from ECG signal based on a statistical weighted moving average filter. Front. Inf. Technol. Electron. Eng. 12(5), 397–403 (2011). https://doi.org/10.1631/jzus.C1010311

    Article  Google Scholar 

  37. P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, ECG signal enhancement based on improved denoising auto-encoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016). https://doi.org/10.1016/j.engappai.2016.02.015

    Article  Google Scholar 

  38. E.A. Zanaty, Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egypt. Inform. J. 13(3), 177–183 (2012). https://doi.org/10.1016/j.eij.2012.08.002

    Article  Google Scholar 

  39. Y. Zhang, C. Liu, S. Wei, C. Wei, F. Liu, ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix. Front. Inf. Technol. Electron. Eng. 15(7), 564–573 (2014). https://doi.org/10.1631/jzus.C1300264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Assali.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assali, I., Nouira, I., Abidi, A. et al. Intelligent ECG Signal Filtering Method Based on SVM Algorithm. Circuits Syst Signal Process 42, 1773–1791 (2023). https://doi.org/10.1007/s00034-022-02196-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02196-z

Keywords

Navigation