Skip to main content
Log in

Signal Approximations Based on Nonlinear and Optimal Piecewise Affine Functions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we address the problem of piecewise affine approximations, that is, to find piecewise affine functions that well-approximate a given signal. The proposed approach is optimal in the sense of \({L}^2\) norm and formulated in a compact and explicit way; no fitting stage is needed. Also, affine parameters are obtained as closed formulas, and affine approximation functions are optimal in their corresponding subdomains. In addition, we state and prove a recursive formula for approximation errors, which makes the approach optimal and nonlinear, links also the subdomains and helps derive an algorithm of complexity of order \(O(MN^2)\), where M represents the number of piecewise affine approximants and N is the number of samples of the processed signal. Finally, obtained qualitative and quantitative results show that the presented method obtains good approximations and provides improvement over piecewise constant approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Let \(u\in L^1(\Omega )\), and denote

    $$\begin{aligned} \int _\Omega \vert Du \vert = \sup \left\{ \int _\Omega u~\text {div}(\varphi )\textrm{d} x;~\varphi =(\varphi _1,\varphi _2) \in \mathbb {C}_0^1(\Omega ,\mathbb {R}^2) \text { and } \Vert \varphi \Vert \le 1\right\} , \end{aligned}$$

    where \(\mathbb {C}_0^1(\Omega )\) is the space of continuously differential functions with compact support in \(\Omega \), \(\text {div}(\varphi ) =\dfrac{\partial \varphi _1}{\partial x_1}+\dfrac{\partial \varphi _2}{\partial x_2}\) where derivatives are taken in a distributional sense, and \(\Vert \varphi \Vert =\Vert (\varphi _1^2+\varphi _2^2)^{1/2}\Vert _{L^\infty (\Omega )}\). The space of functions of bounded variation on \(\Omega \), denoted BV(\(\Omega \)), is the set of functions defined by

    $$\begin{aligned} BV(\Omega ) = \left\{ u\in L^1(\Omega ); ~\text {s.t.}~\int _\Omega \vert Du \vert <\infty \right\} . \end{aligned}$$
  2. \(W^{1,1}(\Omega ,\mathbb {R}^m)\) is the Sobolev space defined by all functions \(u\in L^1(\Omega ,\mathbb {R}^m)\) such that there exists \(g_1,\ldots , g_d\in L^1(\Omega ,\mathbb {R}^m)\) verifying:

    $$\begin{aligned} \int _\Omega u \dfrac{\partial \varphi }{\partial x_i} = -\int _\Omega g_i\varphi ,~\forall \varphi \in C_c^\infty (\Omega ) \text { and } \forall i=1,\ldots ,d \end{aligned}$$

References

  1. C. Adjiman, I. Androulakis, C. Maranas et al., A global optimization method, \(\alpha \)BB, for process design. Comput. Chem. Eng. 20, S419–S424 (1996)

    Google Scholar 

  2. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford Mathematical Monographs, Oxford, 2000)

    MATH  Google Scholar 

  3. S. I. Azuma, J. I. Imura, T. Sugie, Lebesgue piecewise affine approximation of nonlinear systems. Nonlinear Anal. Hybrid Syst. 4(1), 92–102 (2010)

    MathSciNet  MATH  Google Scholar 

  4. A. Bemporad, M. Morari, Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    MathSciNet  MATH  Google Scholar 

  5. A. Bemporad, A. Oliveri, T. Poggi et al., Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations. IEEE Trans. Autom. Control 56(12), 2883–2897 (2011)

    MathSciNet  MATH  Google Scholar 

  6. T. Blu, M. Unser, Quantitative Fourier analysis of approximation techniques. I. Interpolators and projectors. IEEE Trans. Signal Process. 47(10), 2783–2795 (1999)

    MathSciNet  MATH  Google Scholar 

  7. A. Bouchikhi, A. Boudraa, Multicomponent AM–FM signals analysis based on EMD–B-splines ESA. Signal Process. 92(9), 2214–2228 (2012)

    Google Scholar 

  8. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)

  9. M. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD thesis, Massachusetts Institute of Technology, Massachusetts (1995)

  10. I. Burova, A. Doronina, D. Zhilin, Splines of the fourth order approximation and the Volterra integral equations. WSEAS Trans. Math. 20, 475–488 (2021)

    Google Scholar 

  11. B. Chachuat, A.B. Singer, P.I. Barton, Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8373–8392 (2006)

    Google Scholar 

  12. D. Chen, S.B. Ko, A novel decimal logarithmic converter based on first-order polynomial approximation. Circuits Syst. Signal Process. 31(3), 1179–1190 (2012)

    MathSciNet  MATH  Google Scholar 

  13. R.J. Cintra, An integer approximation method for discrete sinusoidal transforms. Circuits Syst. Signal Process. 30(6), 1481 (2011)

    MathSciNet  MATH  Google Scholar 

  14. G. Cybenko, Approximation by superpositions of a sigmoidal functions. Math. Control Signals Syst. 2, 303–314 (1989)

    MathSciNet  MATH  Google Scholar 

  15. C. de Boor, A Practical Guide to Splines (Springer, New York, 1978)

    MATH  Google Scholar 

  16. R.A. DeVore, Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    MATH  Google Scholar 

  17. R.A. DeVore, Multiscale, Nonlinear and Adaptive Approximation (Springer, Heidelberg, 2009), pp.169–201

    Google Scholar 

  18. R.A. DeVore, G.G. Lorentz, Constructive Approximation, Chap 12 (Springer, Heidelberg, 1993), pp.354–389

    Google Scholar 

  19. S. Dhabu, A.P. Vinod, A new time-domain approach for the design of variable FIR filters using the spectral parameter approximation technique. Circuits Syst. Signal Process. 36(5), 2154–2165 (2017)

    Google Scholar 

  20. E.H.S. Diop, A.O. Boudraa, V.B.S. Prasath, Optimal nonlinear signal approximations based on piecewise constant functions. Circuits Syst. Signal Process. 39(5), 2673–2694 (2020)

    MATH  Google Scholar 

  21. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  22. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  23. E. Firippi, M. Chaves, Topology-induced dynamics in a network of synthetic oscillators with piecewise affine approximation. Chaos Interdiscip. J. Nonlinear Sci. 30(11), 113–128 (2020)

    MathSciNet  MATH  Google Scholar 

  24. J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    MathSciNet  MATH  Google Scholar 

  25. E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhuser, Boston, 1994)

    MATH  Google Scholar 

  26. E.M. Hamed, A.M. AbdelAty, L.A. Said et al., Effect of different approximation techniques on fractional-order KHN filter design. Circuits Syst. Signal Process. 37, 5222–5252 (2018)

    Google Scholar 

  27. Y. Isaac, Q. Barthélemy, C. Gouy-Pailler et al., Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. Signal Process. 130, 389–402 (2017)

    Google Scholar 

  28. J.P. Kahane, Teoria constructiva de functiones (Course notes, University of Buenos Aires, 1961)

  29. J. Kristensen, F. Rindler, Piecewise affine approximations for functions of bounded variation. Numer. Math. 132(2), 329–346 (2016)

    MathSciNet  MATH  Google Scholar 

  30. B.I. Kvasov, Methods of Shape Preserving Spline Approximations (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  31. F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator \(s^{\alpha }\) using second-order s-to-z transform and signal modeling. Circuits Syst. Signal Process. 34(6), 1869–1891 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Q. Li, B. Shen, Z. Wang et al., A sampled-data approach to distributed h \(\infty \) resilient state estimation for a class of nonlinear time-delay systems over sensor networks. J. Frankl. Inst. 354(15), 7139–7157 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Q. Li, B. Shen, Z. Wang et al., Anevent-triggered approach to distributed h\(\infty \) state estimation for state-saturated systems with randomly occurring mixed delays. J. Frankl. Inst. 355(6), 3104–3121 (2018)

    MATH  Google Scholar 

  34. G. Makkena, M. Srinivas, Nonlinear sequence transformation-based continuous-time wavelet filter approximation. Circuits Syst. Signal Process. 37(3), 965–983 (2018)

    MathSciNet  MATH  Google Scholar 

  35. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  36. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Elsevier, San Diego, 2009)

    MATH  Google Scholar 

  37. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    MATH  Google Scholar 

  38. R. Martin, W. Shen, Asymptotically optimal empirical bayes inference in a piecewise constant sequence model. Technical Report arXiv:1712.03848v1 (2017)

  39. D.B. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    MathSciNet  MATH  Google Scholar 

  40. I. Papamichail, C. Adjiman, Global optimization of dynamic systems. Comput. Chem. Eng. 28(3), 403–415 (2004)

    MATH  Google Scholar 

  41. Y.C. Pati, R. Razaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in 27th Annual Asilomar Conference on Signals Systems and Computers (IEEE, Pacific Grove, 1993), pp. 1–5

  42. M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, 1981)

  43. S. Qian, D. Chen, K. Chen, Signal approximation via data-adaptive normalized gaussian functions and its applications for speech processing, in IEEE ICASSP (San Francisco, 1992), pp. 141–144

  44. S. Qian, D. Chen, Q. Yin, Adaptive chirplet based signal approximation, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Seattle, 1998), pp. 1781–1784

  45. S.D. Roy, A new Chebyshev-like low-pass filter approximation. Circuits Syst. Signal Process. 29(4), 629–636 (2010)

    MathSciNet  MATH  Google Scholar 

  46. R. Rubinstein, M. Zibulevsky, M. Elad, Double sparsity: learning sparse dictionaries for sparse signal approximation. Trans. Signal Process. 58(3), 1553–1564 (2010)

    MathSciNet  MATH  Google Scholar 

  47. V. Sivaramakrishnan, A.P. Vinod, M.M.K. Oishi, Convexified open-loop stochastic optimal control for linear non-gaussian systems. Technical report, ArXiv (2020)

  48. A. Szűcs, M. Kvasnica, M. Fikar, Optimal piecewise affine approximations of nonlinear functions obtained from measurements. IFAC Proc. Vol. 45(9), 160–165 (2012)

    Google Scholar 

  49. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  50. M. Unser, P.D. Tafti, Stochastic models for sparse and piecewise-smooth signals. IEEE Tans. Signal Process. 59(3), 989–1006 (2011)

    MathSciNet  MATH  Google Scholar 

  51. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing. I. Theory. IEEE Trans. Signal Process. 41(2), 821–832 (1993)

    MATH  Google Scholar 

  52. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing. II. Efficient design and applications. IEEE Trans. Signal Process. 41(2), 834–848 (1993)

    MATH  Google Scholar 

  53. A.P. Vinod, V. Sivaramakrishnan, M.M. Oishi, Piecewise-affine approximation-based stochastic optimal control with gaussian joint chance constraints, in American Control Conference (ACC) (IEEE, Philadelphia, 2019)

  54. S. Vovk, V. Borulko, Determination of amplitude levels of the piecewise constant signal by using polynomial approximation. Radioelectron. Commun. Syst. 60(3), 141–153 (2017)

    Google Scholar 

  55. S.J. Wright, R.D. Novak, M.A.T. Figueiredo, Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    MathSciNet  MATH  Google Scholar 

  56. X. Zhou, J. Liu, X. Wan et al., Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics 30(14), 1943–1949 (2014)

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Surya Prasath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, E.H.S., Ngom, A. & Prasath, V.B.S. Signal Approximations Based on Nonlinear and Optimal Piecewise Affine Functions. Circuits Syst Signal Process 42, 2366–2384 (2023). https://doi.org/10.1007/s00034-022-02224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02224-y

Keywords

Navigation