Skip to main content
Log in

Amplifying circuit lower bounds against polynomial time, with applications

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We give a self-reduction for the Circuit Evaluation problem (CircEval) and prove the following consequences.

  1. Amplifying size–depth lower bounds. If CircEval has Boolean circuits of n k size and n 1−δ depth for some k and δ, then for every \({\epsilon > 0}\), there is a δ′ > 0 such that CircEval has circuits of \({n^{1 + \epsilon}}\) size and \({n^{1- \delta^{\prime}}}\) depth. Moreover, the resulting circuits require only \({\tilde{O}(n^{\epsilon})}\) bits of non-uniformity to construct. As a consequence, strong enough depth lower bounds for Circuit Evaluation imply a full separation of P and NC (even with a weak size lower bound).

  2. Lower bounds for quantified Boolean formulas. Let c, d > 1 and e < 1 satisfy c < (1 − e d )/d. Either the problem of recognizing valid quantified Boolean formulas (QBF) is not solvable in TIME[n c], or the Circuit Evaluation problem cannot be solved with circuits of n d size and n e depth. This implies unconditional polynomial-time uniform circuit lower bounds for solving QBF. We also prove that QBF does not have n c-time uniform NC circuits, for all c < 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allender E. (1989) P-uniform circuit complexity. J. ACM 36(4): 912–928

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Allender (1999). The Permanent Requires Large Uniform Threshold Circuits. Chicago J. Theor. Comput. Sci. (7).

  3. E. Allender & M. Koucký (2010). Amplifying Lower Bounds by Means of Self-Reducibility. J. ACM 57(3).

  4. E. Allender, M. Koucký, D. Ronneburger, S. Roy & V. Vinay (2001). Time-Space Tradeoffs in the Counting Hierarchy. In IEEE Conference on Computational Complexity, 295–302.

  5. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan & S. P. Vadhan (2005). Short PCPs Verifiable in Polylogarithmic Time. In IEEE Conference on Computational Complexity, 120–134.

  6. Borodin A. (1977) On Relating Time and Space to Size and Depth. SIAM J. Computing 6(4): 733–744

    Article  MathSciNet  MATH  Google Scholar 

  7. S. R. Buss & R. Williams (2012). Limits on Alternation-Trading Proofs for Time-Space Lower Bounds. In IEEE Conference on Computational Complexity, 181–191.

  8. R. Chen & V. Kabanets (2012). Lower Bounds against Weakly Uniform Circuits. In Proceedings of COCOON, 408–419.

  9. A. Cobham (1966). The recognition problem for the set of perfect squares. In IEEE Conference on Switching and Automata Theory, 78–87.

  10. M. J. Fischer (1974). Lecture Notes on Network Complexity. Technical Report 1104, Computer Science Department, Yale University, East Lansing, Michigan. URL http://cs-www.cs.yale.edu/homes/fischer/pubs/tr1104.ps.gz.

  11. L. Fortnow (2000). Time-Space Tradeoffs for Satisfiability. J. Comput. Syst. Sci. 60(2), 337–353.

    Google Scholar 

  12. L. Fortnow, R. J. Lipton, D. van Melkebeek & A. Viglas (2005). Time-space lower bounds for satisfiability. J. ACM 52(6), 835–865.

    Google Scholar 

  13. L. Fortnow & C. Lund (1993). Interactive proof systems and alternating time–space complexity. Theoretical Computer Science 113(1), 55–73.

    Google Scholar 

  14. Y. Gurevich & S. Shelah (1989). Nearly Linear Time. In Proceedings of the Symposium on Logical Foundations of Computer Science, volume 363 of LNCS, 108–118. Springer.

  15. F. Hennie & R. Stearns (1966). Two-Tape Simulation of Multitape Turing Machines. J. ACM 13(4), 533–546.

    Google Scholar 

  16. J. Hopcroft, W. Paul & L. Valiant (1977). On time versus space. J. ACM 24(2), 332–337.

    Google Scholar 

  17. R. Impagliazzo, V. Kabanets & A. Wigderson (2002). In search of an easy witness: Exponential time vs. probabilistic polynomial time. JCSS 65(4), 672–694.

    Google Scholar 

  18. V. Kabanets & R. Impagliazzo (2004). Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds. Computational Complexity 13(1-2), 1–46.

    Google Scholar 

  19. Kannan R. (1982) Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets. Information and Control 55(1): 40–56

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kinne (2012). On TC0 Lower Bounds for the Permanent. In Proceedings of COCOON, 420–432.

  21. P. Koiran & S. Perifel (2009). A Superpolynomial Lower Bound on the Size of Uniform Non-constant-depth Threshold Circuits for the Permanent. In IEEE Conference on Computational Complexity, 35–40.

  22. R. J. Lipton & A. Viglas (2003). Non-Uniform Depth of Polynomial Time and Space Simulations. In International Symposium on Fundamentals of Computation Theory, 311–320.

  23. D. van Melkebeek (2006). A Survey of Lower Bounds for Satisfiability and Related Problems. In Foundations and Trends in Theoretical Computer Science, volume 2, 197–303.

  24. A. V. Naik, K. W. Regan & D. Sivakumar (1995). On Quasilinear-Time Complexity Theory. Theor. Comput. Sci. 148(2), 325–349.

    Google Scholar 

  25. W. J. Paul, E. J. Prauss & R. Reischuk (1980). On Alternation. Acta Informatica 14(3), 243–255.

    Google Scholar 

  26. W. J. Paul & R. Reischuk (1980). On Alternation II. A Graph Theoretic Approach to Determinism Versus Nondeterminism. Acta Informatica 14(4), 391–403.

    Google Scholar 

  27. N. Pippenger (1977). Fast simulation of combinational logic circuits by machines without random-access storage. In Proc. 15th Allerton Conference on Communication, Control, and Computing, 25–33.

  28. N. Pippenger & M. J. Fischer (1979). Relations Among Complexity Measures. J. ACM 26(2), 361–381.

    Google Scholar 

  29. Schnorr C. P. (1978) Satisfiability is quasilinear complete in NQL. J. ACM 25(1): 136–145

    Article  Google Scholar 

  30. Tourlakis I. (2001) Time-Space Tradeoffs for SAT on Nonuniform Machines. J. Comput. Syst. Sci. 63(2): 268–287

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Williams (2008). Non-Linear Time Lower Bound for (Succinct) Quantified Boolean Formulas. Technical Report TR08-076, Electronic Colloquium on Computational Complexity (ECCC).

  32. Williams R. (2011) Non-Uniform ACC Circuit Lower Bounds. In IEEE Conference on Computational Complexity, 115(−125): 115–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipton, R.J., Williams, R. Amplifying circuit lower bounds against polynomial time, with applications. comput. complex. 22, 311–343 (2013). https://doi.org/10.1007/s00037-013-0069-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-013-0069-5

Keywords

Subject Classification

Navigation