Skip to main content
Log in

Read-once polynomial identity testing

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

An arithmetic read-once formula (ROF for short) is a formula (a circuit whose underlying graph is a tree) in which the operations are \({\left\{+, \times \right\}}\) and such that every input variable labels at most one leaf. A preprocessed ROF (PROF for short) is a ROF in which we are allowed to replace each variable x i with a univariate polynomial T i (x i ). In this paper, we study the problems of designing deterministic identity testing algorithms for models related to preprocessed ROFs. Our main result gives PIT algorithms for the sum of k preprocessed ROFs, of individual degrees at most d (i.e., each T i (x i ) is of degree at most d), that run in time \({(nd)^{\mathcal{O}(k)}}\) in the white-box setting and in time \({(nd)^{\mathcal{O}(k + \log n)}}\) in the black-box setting. We also obtain better algorithms when the formulas have a small depth that lead to an improvement in the best PIT algorithm for multilinear depth-3 \({\Sigma\Pi\Sigma(k)}\) circuits.

Our main technique is to prove a hardness of representation result, namely a theorem showing a relatively mild lower bound on the sum of k PROFs. We then use this lower bound in order to design our PIT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Agrawal (2005). Proving Lower Bounds Via Pseudo-random Generators. In Proceedings of the 25th FSTTCS, volume 3821 of LNCS, 92–105.

  • M. Agrawal, R. Gurjar, A. Korwar & N. Saxena (2014). Hitting-sets for ROABP and Sum of Set-Multilinear circuits. CoRR abs/1406.7535.

  • Agrawal M., Kayal N., Saxena N. (2004) PRIMES is in P. Annals of Mathematics 160(2): 781–793

    Article  MATH  MathSciNet  Google Scholar 

  • M. Agrawal, C. Saha, R. Saptharishi & N. Saxena (2012). Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), 599–614.

  • M. Agrawal, C. Saha & N. Saxena (2013). Quasi-polynomial hitting-set for set-depth- formulas. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), 321–330.

  • M. Agrawal & V. Vinay (2008). Arithmetic circuits: A chasm at depth four. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 67–75.

  • Alon N. (1999) Combinatorial Nullstellensatz. Combinatorics, Probability and Computing 8: 7–29

    Article  MATH  MathSciNet  Google Scholar 

  • M. Anderson, D. van Melkebeek & I. Volkovich (2011). Derandomizing polynomial identity testing for multilinear constant-read formulae. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, (CCC), 273–282. Full version at http://eccc.hpi-web.de/report/2010/188.

  • Angluin D., Hellerstein L., Karpinski M. (1993) Learning read-once formulas with queries. J. ACM 40(1): 185–210

    Article  MATH  MathSciNet  Google Scholar 

  • Arvind V., Mukhopadhyay P. (2010) The Monomial Ideal Membership Problem and Polynomial Identity Testing. Information and Computation 208(4): 351–363

    Article  MATH  MathSciNet  Google Scholar 

  • M. Ben-Or & P. Tiwari (1988). A Deterministic Algorithm for Sparse Multivariate Polynominal Interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), 301–309.

  • Bshouty D., Bshouty N. H. (1998) On Interpolating Arithmetic Read-Once Formulas with Exponentiation. JCSS 56(1): 112–124

    MATH  MathSciNet  Google Scholar 

  • Bshouty N. H., Cleve R. (1998) Interpolating arithmetic read-once formulas in parallel. SIAM J. on Computing 27(2): 401–413

    Article  MATH  MathSciNet  Google Scholar 

  • N. H. Bshouty, T. R. Hancock & L. Hellerstein (1995a). Learning Arithmetic Read-Once Formulas. SIAM J. on Computing 24(4), 706–735.

  • N. H. Bshouty, T. R. Hancock & L. Hellerstein (1995b). Learning Boolean read-once formulas with arbitrary symmetric and constant fan-in gates. JCSS 50, 521–542.

  • R. A. DeMillo & R. J. Lipton (1978). A Probabilistic Remark on Algebraic Program Testing. Inf. Process. Lett. 7(4), 193–195.

  • Z. Dvir & A. Shpilka (2006). Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing 36(5), 1404–1434.

  • Z. Dvir, A. Shpilka & A. Yehudayoff (2009). Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM J. on Computing 39(4), 1279–1293.

  • M. Forbes, R. Saptharishi & A. Shpilka (2014). Pseudorandomness for Multilinear Read-Once Algebraic Branching Programs, in any Order. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), 867–875. Full version at http://eccc.hpi-web.de/report/2013/132.

  • M. Forbes & A. Shpilka (2012). On identity testing of tensors, low-rank recovery and compressed sensing. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), 163–171.

  • M. Forbes & A. Shpilka (2013). Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 243–252. Full version at http://eccc.hpi-web.de/report/2012/115.

  • T. R. Hancock & L. Hellerstein (1991). Learning read-once formulas over fields and extended bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory (COLT), 326–336.

  • J. Heintz & C. P. Schnorr (1980). Testing Polynomials which Are Easy to Compute (Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), 262–272.

  • M. Jansen, Y. Qiao & J. Sarma (2009). Deterministic Identity Testing of Read-Once Algebraic Branching Programs. CoRR abs/0912.2565.

  • M. Jansen, Y. Qiao & J. Sarma (2010). Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs. In FSTTCS, 296–307.

  • V. Kabanets & R. Impagliazzo (2004). Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds. Computational Complexity 13(1-2), 1–46.

  • M. Karchmer, N. Linial, I. Newman, M. E. Saks & A. Wigderson (1993). Combinatorial characterization of read-once formulae. Discrete Mathematics 114(1-3), 275–282.

  • Z. S. Karnin, P. Mukhopadhyay, A. Shpilka & I. Volkovich (2013). Deterministic Identity Testing of Depth 4 Multilinear Circuits with Bounded Top Fan-In. SIAM J. on Computing 42(6), 2114–2131.

  • Z. S. Karnin & A. Shpilka (2009). Reconstruction of Generalized Depth-3 Arithmetic Circuits with Bounded Top Fan-in. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), 274–285. Full version at http://www.cs.technion.ac.il/~shpilka/publications/KarninShpilka09.pdf.

  • Z. S. Karnin & A. Shpilka (2011). Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica 31(3), 333–364.

  • N. Kayal & S. Saraf (2009). Blackbox Polynomial Identity Testing for Depth 3 Circuits. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 198–207. Full version at http://eccc.hpi-web.de/report/2009/032.

  • N. Kayal & N. Saxena (2007). Polynomial Identity Testing for Depth 3 Circuits. Computational Complexity 16(2), 115–138.

  • A. Klivans & D. Spielman (2001). Randomness efficient identity testing of multivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), 216–223.

  • R. J. Lipton & N. K. Vishnoi (2003). Deterministic identity testing for multivariate polynomials. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 756–760.

  • L. Lovasz (1979). On determinants, matchings, and random algorithms. In Fundamentals of Computing Theory, L. Budach, editor. Akademia-Verlag.

  • K. Mulmuley, U. Vazirani & V. Vazirani (1987). Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113.

  • Raz R. (2006) Separation of Multilinear Circuit and Formula Size. Theory of Computing 2(1): 121–135

    Article  MathSciNet  Google Scholar 

  • R. Raz (2009). Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2).

  • R. Raz & A. Shpilka (2005). Deterministic Polynomial Identity Testing in Non Commutative Models. Computational Complexity 14(1), 1–19.

  • R. Raz, A. Shpilka & A. Yehudayoff (2008). A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM J. on Computing 38(4), 1624–1647.

  • Raz R., Yehudayoff A. (2009) Lower Bounds and Separations for Constant Depth Multilinear Circuits. Computational Complexity 18(2): 171–207

    Article  MathSciNet  Google Scholar 

  • S. Saraf & I. Volkovich (2011). Blackbox Identity Testing for Depth-4 Multilinear Circuits. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), 421–430. Full version at http://eccc.hpi-web.de/report/2011/046.

  • N. Saxena (2008). Diagonal Circuit Identity Testing and Lower Bounds. In Automata, Languages and Programming, 35th International Colloquium, 60–71. Full version at http://eccc.hpi-web.de/eccc-reports/2007/TR07-124/index.html.

  • Saxena N., Seshadhri C. (2011) An Almost Optimal Rank Bound for Depth-3 Identities. SIAM J. Comput. 40(1): 200–224

    Article  MATH  MathSciNet  Google Scholar 

  • N. Saxena & C. Seshadhri (2012). Blackbox Identity Testing for Bounded Top-Fanin Depth-3 Circuits: The Field Doesn’t Matter. SIAM J. Comput. 41(5), 1285–1298.

  • N. Saxena & C. Seshadhri (2013). From Sylvester-Gallai configurations to rank bounds: Improved blackbox identity test for depth-3 circuits. J. ACM 60(5), 33.

  • J. T. Schwartz (1980). Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717.

  • Shpilka A. (2009) Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM J. on Computing 38(6): 2130–2161

    Article  MathSciNet  Google Scholar 

  • A. Shpilka & I. Volkovich (2008). Read-once Polynomial Identity Testing. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), 507–516.

  • A. Shpilka & I. Volkovich (2009). Improved Polynomial Identity Testing for Read-Once Formulas. In APPROX-RANDOM, 700–713. Full version at http://eccc.hpi-web.de/report/2010/011.

  • A. Shpilka & A. Yehudayoff (2010). Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388.

  • R. Zippel (1979). Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, 216–226.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shpilka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpilka, A., Volkovich, I. Read-once polynomial identity testing. comput. complex. 24, 477–532 (2015). https://doi.org/10.1007/s00037-015-0105-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-015-0105-8

Keywords

Subject classification

Navigation