Skip to main content
Log in

Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We present a robust framework for a real-time visual tracking system, based on a BPNN-controlled fast normalized correlation (BCFNC) algorithm and a predictive open-loop car-following control (POL-CFC) strategy. The search for the target is carried out in a dynamically generated resizable search-window. In order to achieve the robustness, we use some edge-enhancement operations before the correlation operation, and introduce an adaptive template-updating scheme. The proposed tracking algorithm is compared with various correlation-based techniques and (in some cases) with the mean-shift and the condensation trackers on real-world scenarios. A significant improvement in efficiency and robustness is reported. The POL-CFC algorithm approximates the current velocity of an open-loop pan-tilt unit, computes the predicted relative-velocity of the object using Kalman filter, and generates the precise control signals to move the camera accurately towards the maneuvering target regardless of its changing velocity. The proposed system works in real-time at the speed of 25–200 frames/ second depending on the template size, and it can persistently track a distant or near object even in the presence of object fading, low-contrast imagery, noise, short-lived background clutter, object-scaling, changing object-velocity, varying illumination, object maneuvering, multiple objects, obscuration, and sudden occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral Histogram. In: IEEE conference on computer vision and pattern recognition (2006)

  2. Ahmed, J., Jafri, M.N., Ahmad, J.: Target tracking in an image sequence using wavelet features and a neural network. In: Proceedings of IEEE Region 10: Tencon’05 Conference, Melbourne (2005)

  3. Ahmed, J., Jafri, M.N., Ahmad, J., Khan, M.I.: Design and implementation of a neural network for real-time object tracking. In: Proceedings of machine vision and pattern recognition in 4th world enformatika conference, Istanbul (2005)

  4. Oppenheim A.V., Schafer R.W. and Buck J.R. (1999). Discrete-Time Signal Processing. Prentice Hall, Englewood cliffs

    Google Scholar 

  5. Kuo, B.C.: Automatic Control Systems, 7th edn. Wiley (1995)

  6. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems, Artech House, Boston, pp. 309–313 (1999)

  7. Bradski, G.R.: Computer vision face tracking as a component of a perceptual user Interface. In: IEEE Workshop on Applic. Comp. Vis., Princeton, pp. 214–219 (1998)

  8. Brookner E. (1998). Tracking and Kalman Filtering Made Easy. Wiley, NewYork

    Google Scholar 

  9. Brunson R.L., Boesen D.L., Crockett G.A. and Riker J.F. (1992). Precision trackpoint control via correlation track referenced to simulated imagery. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Google Scholar 

  10. Chen, Q.-s., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Mach Intell. 16 (1994)

  11. Comaniciu D., Visvanathan R. and Meer P. (2003). Kernel based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5): 564–575

    Article  Google Scholar 

  12. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings, IEEE conference on computer vision and pattern recognition, Hilton Head, vol. 1, pp. 142–149 (2000)

  13. Crow F. (1984). Summed-area tables for texture mapping. Comput. Graph. 18(3): 207–212

    Article  Google Scholar 

  14. Cuevas, E.V., Zaldivar, D., Rojas, R.: Intelligent tracking. Technical Report (2003)

  15. Cui, Y., Samarasekera, S., Huang, Q., Greienhagen, M.: Indoor monitoring via the collaboration between a peripheral sensor and a foveal sensor. In: IEEE Workshop on Visual Surveillance, Bombay, pp. 2–9 (1998)

  16. Demuth, H., Beale, M.: Neural Network Toolbox for Use with MATLAB: User’s Guide (v. 4), The Mathworks, Inc. (2001)

  17. Doulamis, A., Doulamis, N., Ntalianis, K., Kollias, S.: An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier archtecture. IEEE Trans. Neural Netw. (2003)

  18. Eleftheriadis A. and Jacquin A. (1995). Automatic face location detection and tracking for model-assisted coding of video teleconference sequences at low bit rates. Signal Process. Image Commun. 7(3): 231–248

    Article  Google Scholar 

  19. Fagiani, C., Gips, J.: An evaluation of tracking methods for human-computer interaction, Senior Thesis, Computer Science Department, Boston College, Fulton Hall, Chestnut Hill, 02467, 2002

  20. Fausett, L.: Fundamentals of Neural Networks: Architectures. Algorithms, and Applications, Prentice Hall, Englewood Cliffs (1994)

  21. Fitts, J.M.: Precision correlation tracking via optimal weighting functions. In: 18th IEEE conference on decision and control including the symposium on adaptive processes (1979)

  22. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digtal Image Processing Using MATLAB, Pearson Education Pte. Ltd., Singapore (2004)

  23. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn, Prentice-Hall, Inc., Englewoodcliffs (2002)

  24. Haykin S. (1999). Neural Networks: A Comprehensive Foundation, 2nd edn. Pearson Education, Delhi

    Google Scholar 

  25. Isard M. and Blake A. (1998). CONDENSATION-conditional density propagation for visual tracking. Int. J. Comput. Vision 29(1): 5–28

    Article  Google Scholar 

  26. Kass M., Witkin A. and Terzopoulos D. (1988). Snakes: active contour models. Int. J. Comput. Vis. 1(4): 321–331

    Article  Google Scholar 

  27. Kuglin, C., Hines, D.: The Phase Correlation Image Alignment Method. In: Proceedings of International conference cybernetics and society, pp. 163–165 (1975)

  28. Lewis, J.P.: Fast Normalized Cross-Correlation. Industrial Light& Magic (1995)

  29. Grewal M.S. and Andrews A.P. (2001). Kalman Filtering: Theory and Practice Using MATLAB, 2nd edn. J. Wiley, New York

    Google Scholar 

  30. Moller M.F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525–533

    Article  Google Scholar 

  31. Hayes M.H. (1999). Digital Signal Processing. McGraw-Hill, New York

    Google Scholar 

  32. Mir-Nasiri, N.: Camera-based 3D tracking. In: Proceedings of IEEE Region 10: Tencon’05 Conference, Melbourne (2005)

  33. Nummiaroa K., Koller-Meierb E., Gool L.V. An adaptive color-based particle filter Image Vision Comput. 21, 99–110 (2003)

  34. Perez, P., et al.: Color-based probabilistic tracking. European Conference on Computer Vision, pp. 661–675 (2002)

  35. Porikli, F., Tuzel, O.: Multi kernel object tracking. In: Proceedings of IEEE International conference on multimedia and Expo, Amsterdam (2005)

  36. Porikli, F.: Integral histogram: a fast way to extract histograms in cartesian spaces. In: IEEE conference on computer vision and pattern recognition (2005)

  37. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: IEEE Conference on Computer Vision and Pattern Recognition (2006)

  38. Ritter G.X. and Wilson J.N. (1996). Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, Boca Raton

    MATH  Google Scholar 

  39. Rosales, R., Sclaro, S.: 3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. In: IEEE Conf. Comp. Vis. And Pat. Rec., vol. 2, pp. 117–123, Fort Collins (1999)

  40. Intille, S.S., Davis, J.W., Bobick, A.F.: Real-time closed-world tracking, In: IEEE Conference on Comp. Vis. and Pat. Rec., Puerto Rico, pp. 697–703 (1997)

  41. Stauffer C. and Grimson W. (2000). Learning patterns of activity using real time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8): 747–767

    Article  Google Scholar 

  42. Stone, H.S., Tao, B., McGuire, M.: Analysis of image registration noise due to rotationally dependent aliasing. NEC Research (2000)

  43. Stone, H.S.: Fourier-based image registration techniques. NEC Research (2002)

  44. Umbaugh S.E. (2005). Computer Imaging: Digital Image Analysis and Processing. CRC Press, Boca Raton

    MATH  Google Scholar 

  45. Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for particle filtering and visual tracking. European Conference on Computer Vision (2006)

  46. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill 27599–3175 (2004)

  47. Wong, S.: Advanced correlation tracking of objects in cluttered imagery. In: Proceedings of SPIE, vol. 5810 (2005)

  48. Wren C., Azarbayejani A., Darrell T. and Pentland A. (1997). PFinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19: 780–785

    Article  Google Scholar 

  49. Yilmaz A., Li X. and Shah M. (2004). Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intelli. 26(11): 1531–1536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, J., Jafri, M.N., Shah, M. et al. Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking. Machine Vision and Applications 19, 1–25 (2008). https://doi.org/10.1007/s00138-007-0072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0072-4

Keywords

Navigation