Skip to main content

Advertisement

Log in

Color constancy based on local space average color

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Light, which is reflected from an object, varies with the type of illuminant used. Nevertheless, the color of an object appears to be approximately constant to a human observer. The ability to compute color constant descriptors from reflected light, is called color constancy. In order to solve the problem of color constancy, some assumptions have to be made. One frequently made assumption is that on average, the world is gray. We address the problem of color constancy and focus on the use of space average color for color constancy. Instead of computing global space average color we suggest to use local space average color as the illuminant frequently varies across an image. We discuss several different methods on how to compute local space average color. The performance of the different algorithms as well as related algorithms is evaluated on an object recognition task. Algorithms based on local space average color are simple, yet highly effective for the problem of color constancy. Such algorithms are particularly suited for object recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Keywords

  • Agarwal V., Abidi B.R., Koschan A. and Abidi M.A. (2006). An overview of color constancy algorithms. J. Pattern Recognition Res. 1(1): 42–54

    Google Scholar 

  • Almasi, G.S., Gottlieb, A.: Highly Parallel Computing. The Benjamin/Cummings Publishing Company, Redwood City, CA (1994). ISBN 0-8053-0443-6

  • Barnard K., Finlayson G. and Funt B. (1997). Color constancy for sceneswith varying illumination. Comput. Vis. Image Understand. 65(2): 311–321

    Article  Google Scholar 

  • Barnard K., Martin L. and Funt B. (2000). Colour by correlation in a three dimensional colour space. In: Vernon, D. (eds) Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, pp 375–389. Springer, Berlin

    Google Scholar 

  • Barnard K., Ciurea F. and Funt B. (2001). Sensor sharpening for computational color constancy. J. Opt. Soc. Am. A 18(11): 2728–2743

    Article  Google Scholar 

  • Barnard K., Cardei V. and Funt B. (2002). A comparison of computational color constancy algorithms—part I: Methodology and experiments with synthesized data. IEEE Trans. Image Process. 11(9): 972–984

    Article  Google Scholar 

  • Barnard K., Martin L., Coath A. and Funt B. (2002). A comparison of computational color constancy algorithms—part II: Experiments with image data. IEEE Trans. Image Process. 11(9): 985–996

    Article  Google Scholar 

  • Barnard K., Martin L., Funt B. and Coath A. (2002). A data set for color research. Color Res. Appl. 27(3): 147–151

    Article  Google Scholar 

  • Blake A. (1985). Boundary conditions for lightness computation inmondrian world. Comput. Vis. Graph. Image Process. 32: 314–327

    Article  Google Scholar 

  • Brainard D.H. and Freeman W.T. (1997). Bayesian color constancy. J. Opt. Soc. Am. A 14(7): 1393–1411

    Article  Google Scholar 

  • Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühling, H.: Taschenbuch der Mathematik, 5th edn. Verlag Harri Deutsch, Thun und Frankfurt/Main (2001). ISBN 3-87171-2015-X

  • Buchsbaum G. (1980). A spatial processor model for object colour perception. J. Franklin Inst. 310(1): 337–350

    Google Scholar 

  • Demmel, J.: Cs267: Lectures 15 and 16. Solving the discrete Poisson equation using Jacobi, SOR, conjugate gradients, and the FFT. Computer Science Division, University of California at Berkeley (1996)

  • D’Zmura M. and Lennie P. (1992). Mechanisms of color constancy. In: Healey, G.E., Shafer, S.A. and Wolff, L.B. (eds) Color, pp 224–234. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Ebner, M.: Combining white-patch retinex and the gray world assumption to achieve color constancy for multiple illuminants. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition, Proceedings of the 25th DAGM Symposium, Magdeburg, Germany, pp. 60–67. Springer, Berlin (2003) ISBN 3-540-40861-4

  • Ebner M. (2004). A parallel algorithm for color constancy. J. Parallel Distribut. Comput. 64(1): 79–88

    Article  Google Scholar 

  • Ebner M. (2006). Evolving color constancy. Special Issue on Evolutionary Computer Vision and Image Understanding of Pattern Recognition Letters 27(11): 1220–1229

    Google Scholar 

  • Ebner M. (2007). Color Constancy. Wiley, Chichester

    Google Scholar 

  • Ebner, M.: How does the brain arrive at a color constant descriptor? In: Mele, F., Ramella, G., Santillo, S., Ventriglia , F. (eds.) Proceedings of the 2nd International Symposium on Brain, Vision and Artificial Intelligence, Naples, Italy, 10–12 October, 2007, pp. 84–93. Springer, Berlin (2007)

  • Ebner, M., Herrmann, C.: On determining the color of the illuminant using the dichromatic reflection model. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition, Proceedings of the 27th DAGM Symposium, Vienna, Austria, pp. 1–8. Springer, Berlin (2005)

  • Finlayson G.D. (1996). Color in perspective. IEEE Trans. Pattern Anal. Mach. Intell. 18(10): 1034–1038

    Article  Google Scholar 

  • Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color angle invariants for object recognition. In: Proceedings of the Third IS&T/SID Color Imaging Conference: Color Science, Systems and Applications, The Radisson Resort, Scottsdale, Arizona, November 7–10, pp. 44–47 (1995)

  • Finlayson, G., Hordley, S.: Colour signal processing which removes illuminant colour temperature dependency. UK Patent Application GB 2360660A, January (2001)

  • Finlayson G.D. and Funt B.V. (1996). Coefficient channels: Derivation and relationship to other theoretical studies. Color Res. Appl. 21(2): 87–96

    Article  Google Scholar 

  • Finlayson G.D. and Hordley S.D. (2001). Color constancy at a pixel. J. Opt. Soc. Am. A 18(2): 253–264

    Article  Google Scholar 

  • Finlayson G.D. and Schaefer G. (2001). Solving for colour constancy using a constrained dichromatic reflection model. Int. J. Comput. Vis. 42(3): 127–144

    Article  MATH  Google Scholar 

  • Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Proceedings of the IS&T/SID Twelfth Color Imaging Conference, pp. 37–41 (2004)

  • Finlayson G.D., Drew M.S. and Funt B.V. (1994). Spectral sharpening: sensor transformations for improved color constancy. J. Opt. Soc. Am. A 11(4): 1553–1563

    Article  Google Scholar 

  • Finlayson G.D., Drew M.S. and Funt B.V. (1994). Color constancy: generalized diagonal transforms suffice. J. Opt. Soc. Am. A 11(11): 3011–3019

    Article  Google Scholar 

  • Finlayson, G.D., Hubel, P.M., Hordley, S.: Color by correlation. In: Proceedings of IS&T/SID. The Fifth Color Imaging Conference: Color Science, Systems, and Applications, The Radisson Resort, Scottsdale, AZ, November 17–20, pp. 6–11 (1997)

  • Finlayson G.D., Schiele B. and Crowley J.L. (1998). Comprehensive colour image normalization. In: Burkhardt, H. and Neumann, B. (eds) Fifth European Conference on Computer Vision (ECCV ’98), Freiburg, Germany, pp 475–490. Springer, Berlin

    Google Scholar 

  • Finlayson G.D., Hordley S. and Pubel P.M. (2001). Color by correlation: a simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23(11): 1209–1221

    Article  Google Scholar 

  • Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Proceedings of the European Conference on Computer Vision, pp. 823–836. Springer, Berlin (2002)

  • Finlayson, G.D., Drew, M.S.. Lu, C.: Intrinsic images by entropy minimization. In: Pajdla, T., Matas, J. (eds.) Proceedings of the 8th European Conference on Computer Vision, Part III, Prague, Czech Republic, May 2004, pp. 582–595, Springer, Berlin (2004)

  • Forsyth, D.A.: A novel approach to colour constancy. In: Second International Conference on Computer Vision, Tampa, FL, December 5–8, pp. 9–18. IEEE Press, New York (1988)

  • Forsyth D.A. (1990). A novel algorithm for color constancy. Int. J. Comput. Vis. 5(1): 5–36

    Article  Google Scholar 

  • Forsyth D.A. (1992). A novel algorithm for color constancy. In: Healey, G.E., Shafer, S.A. and Wolff, L.B. (eds) Color, pp 241–271. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Funt, B., Cardei, V., Barnard, K.: Learning color constancy. In: Proceedings of the IS&T/SID Fourth Color Imaging Conference, Scottsdale, 19–22 November 1996, pp. 58–60

  • Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In: Burkhardt, H., Neumann, B. (eds.) Fifth European Conference on Computer Vision (ECCV ’98), Freiburg, Germany, pp. 445–459 Springer, Berlin (1998)

  • Gershon, R., Jepson, A.D., Tsotsos, J.K.: From [R,G,B] to surface reflectance: Computing color constant descriptors in images. In: McDermott, J.P. (ed.) Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan, Italy, vol. 2, pp. 755–758. Morgan Kaufmann, Los Altos, CA (1987)

  • Geusebroek J.-M., Smeulders A.W.M., Geerts H. and Boomgaard R. (2001). Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12): 1338–1350

    Article  Google Scholar 

  • Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison–Wesley, Reading, MA (1992). ISBN 0-201-60078-1

  • Helson H. (1938). Fundamental problems in color vision. I. the principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination. J. Exp. Psychol. 23(5): 439–476

    Article  Google Scholar 

  • Horn B.K.P. (1974). Determining lightness from an image. Comput. Graph. Image Process. 3: 277–299

    Article  Google Scholar 

  • Horn, B.K.P.: Robot Vision. The MIT Press, Cambridge, MA, (1986). ISBN 0-262-08159-8

  • Jähne, B.: Digitale Bildverarbeitung, 5th edn. Springer, Berlin (2002). ISBN 3-540-41260-3

  • Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995). ISBN 0-07-113407-7

  • Judd D.B. (1960). Appraisal of Land’s work on two-primary color projections. J. Opt. Soc. Am. 50(3): 254–268

    Article  Google Scholar 

  • Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad. Sci. USA, 83 May 3078–3080 (1986)

    Google Scholar 

  • Land E.H. and McCann J.J. (1971). Lightness and retinex theory. J. Opt. Soc. Am. 61(1): 1–11

    Article  Google Scholar 

  • McCann J.J., McKee S.P. and Taylor T.H. (1976). Quantitative studies in retinex theory. Vis. Res. 16: 445–458

    Article  Google Scholar 

  • Moore A., Allman J. and Goodman R.M. (1991). A real-time neural system for color constancy. IEEE Trans. Neural Networks 2(2): 237–247

    Article  Google Scholar 

  • Nolting, W.: Grundkurs: Theoretische Physik, Band 3 Elektrodynamik, zweite edn. Verlag Zimmermann-Neufang, Ulmen (1992). ISBN 3-922410-20-0

  • Novak, C.L., Shafer, S.A.: Supervised color constancy for machine vision. In: Healey, G.E., Shafer, S.A., Wolff, L.B. (eds.) Color, pp. 284–299 Jones and Bartlett Publishers, Boston (1992)

  • Physik, J.O.: Carl Hanser Verlag, München (1982). ISBN 3-446-12977-4

  • Parker, J.R.: Algorithms for Image Processing and Computer Vision. Wiley, New York (1997). ISBN 0-471-14056-2

  • Paulus, D., Csink, L., Niemann, H.: Color cluster rotation. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 161–165. IEEE Computer Society Press, Silver spring, MD (1998)

  • Pomierski, T., Groß, H.M.: Verfahren zur empfindungsgemäßen Farbumstimmung. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung 1995, Verstehen akustischer und visueller Informationen, 17. DAGM-Symposium, Bielefeld, 13–15 September 1995, pp. 473–480 Springer, Berlin (1995)

  • Rahman, Z., Jobson, D.J., Woodell, G.A.: Method of improving a digital image. United States Patent No. 5,991,456, November (1999)

  • Risson, V.J.: Determination of an illuminant of digital color image by segmentation and filtering. United States Patent Application, Pub. No. US 2003/0095704 A1, May (2003)

  • Schiele, B., Crowley, J.L.: Object recognition using multidimensional receptive field histograms. In: Buxton, B., Cipolla, R. (eds.) Fourth European Conference On Computer Vision, Cambridge, UK, April 14–18, pp. 610–619 Springer, Berlin (1996)

  • Schiele B. and Crowley J.L. (2000). Recognition without correspondence using multidimensional receptive field histograms. Int. J. Comput. Vis. 36(1): 31–52

    Article  Google Scholar 

  • Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs, NJ (2001). ISBN 0-13-030796-3

  • Stokes, M., Anderson, M., Chandrasekar, S., Motta, R.: A standard default color space for the internet—sRGB. Technical Report, Version 1.10, (1996)

  • Swain M.J. and Ballard D.H. (1991). Color indexing. Int. J. Comput. Vis. 7: 11–32

    Article  Google Scholar 

  • Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. Technical Report AI Memo 2002-015, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, September (2002)

  • Tominaga S. (1991). Surface identification using the dichromatic reflection model. IEEE Trans. Pattern Anal. Mach. Intell. 13(7): 658–670

    Article  Google Scholar 

  • van de Weijer, J., Gevers, Th.: Color constancy based on the grey-edge hypothesis. In: Proc. ICIP 2005, Genua, Italy, October (2005)

  • van de Weijer, J., Gevers, Th., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. (2007)

  • Weickert J. (1997). A review of nonlinear diffusion filtering. In: Romeny, B.H., Florack, L., Koenderink, J. and Viergever, M. (eds) Scale-Space Theory in Computer Vision, pp 3–28. Springer, Berlin

    Google Scholar 

  • Weiss, Y.: Deriving intrinsic images from image sequences. In: Proceedings of the International Conference on Computer Vision, Vancouver, Canada, July 9–12, 2001. IEEE Press, New York (2001)

  • Weisstein, E.W.: Hankel transform. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/HankelTransform.html (1999)

  • Zeki, S.: A Vision of the Brain. Blackwell Science, Oxford (1993). ISBN 0-632-03054-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ebner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, M. Color constancy based on local space average color. Machine Vision and Applications 20, 283–301 (2009). https://doi.org/10.1007/s00138-008-0126-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0126-2

Keywords

Navigation