Skip to main content
Log in

Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Optical flow approaches calculate vector fields which determine the apparent velocities of objects in time-varying image sequences. They have been analyzed extensively in computer science using both natural and synthetic video sequences. In life sciences, there is an increasing need to extract kinetic information from temporal image sequences which reveals the interplay between form and function of microscopic biological structures. In this work, we test different variational optical flow techniques to quantify the displacements of biological objects in 2D fluorescent image sequences. The accuracy of the vector fields is tested for defined displacements of fluorescent point sources in synthetic image series which mimic protein traffic in neuronal dendrites, and for GABABR1 receptor subunits in dendrites of hippocampal neurons. Our results reveal that optical flow fields predict the movement of fluorescent point sources within an error of 3% for a maximum displacement of 160 nm. Displacement of agglomerated GABABR1 receptor subunits can be predicted correctly for maximum displacements of 640 nm. Based on these results, we introduce a criteria to derive the optimum parameter combinations for the calculation of the optical flow fields in experimental images. From these results, temporal sampling frequencies for image acquisition can be derived to guarantee correct motion estimation for biological objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramírez O.A., García A., Rojas R., Couve A., Härtel S.: Confined displacement algorithm for the discrimination of true and random colocalization of fluorescence signals in confined cellular compartments. J. Microsc. 239(3), 173–183 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ramírez O.A., Vidal R.L., Tello J.A., Vargas K.J., Kindler S., Hartel S., Couve A.: Dendritic assembly of heteromeric gamma-aminobutyric acid type B receptor subunits in hippocampal neurons. J. Biol. Chem. 284(19), 13077–13085 (2009)

    Article  Google Scholar 

  3. Härtel S., Jara J., Lemus C.G., Concha M.L.: 3D morpho-topological analysis of asymmetric neuronal morphogenesis in developing zebrafish. In: Tavares, J., Natal, J.R. (eds) Computational Modelling of Objects Represented in Images. Fundamentals, Methods and Applications, vol. 6, pp. 215–220. Taylor and Francis, New York (2007)

    Google Scholar 

  4. Gustafsson M.G., Shao L., Carlton P.M., Wang C.J., Golubovskaya I.N., Cande W.Z., Agard D.A., Sedat J.W.: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94(12), 4957–4970 (2008)

    Article  Google Scholar 

  5. Hell S.W., Nagorni M.: 4Pi confocal microscopy with alternate interference. Opt. Lett. 23(20), 1567–1569 (1998)

    Article  Google Scholar 

  6. Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Article  Google Scholar 

  7. Hell S.W., Dyba M., Jakobs S.: Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14(5), 599–609 (2004)

    Article  Google Scholar 

  8. Keller P.J., Stelzer E.H.: Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy. Curr. Opin. Neurobiol. 18(6), 624–632 (2008)

    Article  Google Scholar 

  9. Aubert G., Kornprobst P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, vol. 147. Applied Mathematical Sciences. Springer, Berlin (2006)

    Google Scholar 

  10. Fanani M.L., De Tullio L., Hartel S., Jara J., Maggio B.: Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition. Biophys. J. 96(1), 67–76 (2009)

    Article  Google Scholar 

  11. Fanani M.L., Härtel S., Maggio B., De Tullio L., Jara J., Olmos F., Oliveira R.G.: The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis. Biochim. Biophys. Acta 1798(7), 1309–1323 (2010)

    Article  Google Scholar 

  12. Fidorra M., Heimburg T., Seeger H.M.: Melting of individual lipid components in binary lipid mixtures studied by FTIR spectroscopy, DSC and Monte Carlo simulations. Biochim. Biophys. Acta 1788(3), 600–607 (2009)

    Article  Google Scholar 

  13. Härtel S., Fanani M.L., Maggio B.: Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys. J. 88(1), 287–304 (2005)

    Article  Google Scholar 

  14. Hubený, J., Ulman, V., Matula, P.: Estimating large local motion in live-cell imaging using variational optical flow, towards motion tracking in live cell imaging using optical flow. In: Proceedings of VISAPP 2007, Second International Conference on Computer Vision Theory and Applications, pp. 542–548 (2007)

  15. Hamou A.K., El-Sakka M.R.: Optical flow active contours with primitive shape priors for echocardiography. EURASIP J. Adv. Signal Process 2010, 1–11 (2010)

    Article  Google Scholar 

  16. Baraldi P., Sarti A., Lamberti C., Prandini A., Sgallari F.: Evaluation of differential optical flow techniques on synthesized echo images. IEEE Trans. Biomed. Eng. 43(3), 259–272 (1996)

    Article  Google Scholar 

  17. Abramoff M.D., Viergever M.A.: Computation and visualization of three-dimensional soft tissue motion in the orbit. IEEE Trans. Med. Imaging 21(4), 296–304 (2002)

    Article  Google Scholar 

  18. Roberts T.J., McKenna S.J., Du C.J., Wuyts N., Valentine T.A., Bengough A.G.: Estimating the motion of plant root cells from in vivo confocal laser scanning microscopy images. Mach. Vis. Appl. 21, 921–939 (2010)

    Article  Google Scholar 

  19. Ben-Tekaya H., Miura K., Pepperkok R., Hauri H.P.: Live imaging of bidirectional traffic from the ERGIC. J. Cell Sci. 118(2), 357–367 (2005)

    Article  Google Scholar 

  20. Lombardot, B., Luengo-Oroz, M., Melani, C., Faure, E., Santos, A., Peyrieras, N., Ledesma-Carbayo, M., Bourgine, P.: Evaluation of four 3d non rigid registration methods applied to early zebrafish development sequences. MIAAB MICCAI (2008)

  21. Gerencser A.A., Nicholls D.G.: Measurement of instantaneous velocity vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys. J. 95(6), 3079–3099 (2008)

    Article  Google Scholar 

  22. Buibas M., Yu D., Nizar K., Silva G.: Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow. Ann. Biomed. Eng. 38(8), 2520–2531 (2010)

    Article  Google Scholar 

  23. Melani, C., Campana, M., Lombardot, B., Rizzi, B., Veronesi, F., Zanella, C., Bourgine, P., Mikula, K., Peyrieras, N., Sarti, A.: Cells tracking in a live zebrafish embryo. In: Conf Proc IEEE Eng Med Biol Soc 2007, pp. 1631–1634 (2007)

  24. Horn B.K.P., Schunck B.G.: Determining optical flow. Artif. Intell. 17, 185–204 (1981)

    Article  Google Scholar 

  25. Bruhn A., Weickert J., Feddern C., Kohlberger T., Schnorr C.: Variational optical flow computation in real time. IEEE Trans. Image Process. 14(5), 608–615 (2005)

    Article  MathSciNet  Google Scholar 

  26. Papenberg N., Bruhn A., Brox T., Didas S., Weickert J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2006)

    Article  Google Scholar 

  27. Bruhn A., Weickert J., Schnörr C.: Combining the advantages of local and global optic flow methods. In: Gool, L. (eds) Proc. 24th DAGM Symposium on Pattern Recognition, vol. 2449, pp. 454–462. Springer, Zurich (2002)

    Google Scholar 

  28. Bruhn A., Weickert J., Schnörr C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  29. Bruhn A., Weickert J., Feddern C., Kohlberger T., Schnorr C.: Real-time optic flow computation with variational methods. Proc. Comput. Anal. Images Patterns 2756, 222–229 (2003)

    Article  MathSciNet  Google Scholar 

  30. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, vol. 3, pp. 674–679 (1981)

  31. Sorensen, T.S., Noe, K.O., Christoffersen, C.P.V., Kristiansen, M., Mouridsen, K., Osterby, O., Brix, L.: Active contours in optical flow fields for image sequence segmentation. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on. pp. 916–919 (2010)

  32. Cornelius, N., Kanade, T.: Adapting optical-flow to measure object motion in reflectance and X-ray image sequences. In: Proceedings of the ACM SIGGRAPH/SIGART Interdisciplinary Workshop on Motion, pp. 145–153 (1986)

  33. Castro J., Ruminot I., Porras O.H., Flores C.M., Hermosilla T., Verdugo E., Venegas F., Härtel S., Michea L., Barros L.F.: ATP steal between cation pumps: a mechanism linking Na+ influx to the onset of necrotic Ca2+ overload. Cell Death Different. 13, 1675–1685 (2006)

    Article  Google Scholar 

  34. Härtel S., Zorn-Kruppa M., Tykhonova S., Alajuuma P., Engelke M., Diehl H.: Staurosporine-induced apoptosis in human cornea epithelial cells in vitro. Cytometry 08, 15–23 (2003)

    Article  Google Scholar 

  35. Sanchez G., Escobar M., Pedrozo Z., Macho P., Domenech R., Hartel S., Hidalgo C., Donoso P.: Exercise and tachycardia increase NADPH oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovasc. Res. 77(2), 380–386 (2008)

    Article  Google Scholar 

  36. Espinosa A., Garcia A., Hartel S., Hidalgo C., Jaimovich E.: NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells. J. Biol. Chem. 284(4), 2568–2575 (2009)

    Article  Google Scholar 

  37. Parra V., Eisner V., Chiong M., Criollo A., Moraga F., Garcia A., Hartel S., Jaimovich E., Zorzano A., Hidalgo C., Lavandero S.: Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc. Res. 77(2), 387–397 (2008)

    Article  Google Scholar 

  38. Box G.E.P., Muller M.E.: note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  39. Barron J.L., Fleet D.J., Beauchemin S.S.: Performance of optical-flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  40. Costes S.V., Daelemans D., Cho E.H., Dobbin Z., Pavlakis G., Lockett S.: Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003 (2004)

    Article  Google Scholar 

  41. Comeau J.W., Kolin D.L., Wiseman P.W.: Accurate measurements of protein interactions in cells via improved spatial image cross-correlation spectroscopy. Mol. Biosyst. 4, 672–685 (2008)

    Article  Google Scholar 

  42. Ruhnau P., Kohlberger T., Schnörr C., Nobach H.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005)

    Article  Google Scholar 

  43. Demandolx D., Davoust J.: Multicolour analysis and local image correlation in confocal microscopy. J. Microsc. 185, 21–36 (1997)

    Article  Google Scholar 

  44. Lachmanovich E., Shvartsman D.E., Malka Y., Botvin C., Henis Y.I., Weiss A.M.: Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J. Microsc. 212, 122–131 (2003)

    Article  MathSciNet  Google Scholar 

  45. van Kempen G.: Image Restoration in Fluorescence Microscopy. Technische Universiteit Delft, Netherlands (1999)

    Google Scholar 

  46. Bruhn A., Weickert J., Kohlberger T., Schnorr C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vis. 70(3), 257–277 (2006)

    Article  Google Scholar 

  47. Hirokawa N., Noda Y.: Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88(3), 1089–1118 (2008)

    Article  Google Scholar 

  48. Racine V., Sachse M., Salamero J., Fraisier V., Trubuil A., Sibarita J.B.: Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J. Microsc. 225(Pt 3), 214–228 (2007)

    Article  MathSciNet  Google Scholar 

  49. Broeke J.H., Ge H., Dijkstra I.M., Cemgil A.T., Riedl J.A., Cornelisse L.N., Toonen R.F., Verhage M., Fitzgerald W.J.: Automated quantification of cellular traffic in living cells. J. Neurosci. Methods 178(2), 378–384 (2009)

    Article  Google Scholar 

  50. Misko A., Jiang S., Wegorzewska I., Milbrandt J., Baloh R.H.: Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30(12), 4232–4240 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Härtel.

Electronic Supplementary Material

The Below is the Electronic Supplementary Materials.

ESM 1 (PDF 127 kb)

ESM 2 (PDF 174 kb)

ESM 3 (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delpiano, J., Jara, J., Scheer, J. et al. Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy. Machine Vision and Applications 23, 675–689 (2012). https://doi.org/10.1007/s00138-011-0362-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0362-8

Keywords

Navigation