Skip to main content
Log in

Active contour model combining region and edge information

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

A novel active contour model is proposed by combining region and edge information. Its level set formulation consists of the edge-related term, the region-based term and the regularization term. The edge-related term is derived from the image gradient, and facilitates the contours evolving into object boundaries. The region-based term is constructed using both local and global statistical information, and related to the direction and velocity of the contour propagation. The last term ensures stable evolution of the contours. Finally, a Gaussian convolution is used to regularize the level set function. In addition, a new quantitative metric named modified root mean squared error is defined, which can be used to evaluate the final contour more accurately. Experimental results show that the proposed method is efficient and robust, and can segment homogenous images and inhomogenous images with the initial contour being set freely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kass M., Witkin A., Terzopoulos D.: Snake: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Chan T., Vese L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Paragios N., Deriche R.: Geodesic active regions and level set methods for supervised texture segmetnation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  4. Zhao H., Chan T., Merriman B., Osher S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanc-Freaud C.Samson.L., Aubert G., Zerubia J.: A variational model for image classification and restoration. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 460–472 (2000)

    Article  Google Scholar 

  6. Tsai A., Yezzi A., Willsky A.S.: Curve evolution implementation of the Mumford–Shah Functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  7. Hernandez M., Frangi A.F.: Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med. Image Anal. 11(3), 224–241 (2007)

    Article  Google Scholar 

  8. Rousson, M., Deriche, R.: A variational framework for active and adaptive segmentation of vector valued images. In: Proceedings of the Workshop on Motion and Video Computing (MOTION’02), pp. 56–61. Orlando (2002)

  9. Xu C., Prince J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: A new variational formulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 430–436. San Diego (2005)

  11. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C., Sapiro, G.: New possibilities with Sobolev active contours. In: Proceedings of SSVM, pp. 153–164. Ischia (2007)

  12. Caselles V., Kimmel R., Sapiro G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  13. Kishenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Processing of IEEE International Conference on Computer Vision’95, pp. 810–815. Boston (1995)

  14. Vasilevskiy A., Siddiqi K.: Flux-maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)

    Article  Google Scholar 

  15. Ronfard R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  16. Vese L., Chan T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  17. Pichon E., Tanenbaum A., Kikins R.: A statistically based fow for image segmentation. Med. Image Anal. 8(3), 267–274 (2004)

    Article  Google Scholar 

  18. Kim J., Fisher J., Yezzi A.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  19. Paragios, N.K.: Geodesic active regions and level set methods: Contributions and applications in artificial vision, PhD thesis, University of Nice Sophia Antipolis, January 2000

  20. Zhang K., Zhang L., Song H., Zhou W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  21. Allili M.S., Ziou D.: Globally adaptive region information for automatic color–texture image segmentation. Pattern Recognit. Lett. 28(15), 1946–1956 (2007)

    Article  Google Scholar 

  22. Malladi R., Sethian J.A., Vemuri B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  23. Chen Y., Tagare H.D., Thiruvenkadam S., Huang F., Wilson D., Gopinath K.S., Briggs R.W., Geiser E.A.: Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  24. de Bruijne, M., van Ginneken, B., Niessen, W.J., Viergever, M.A.: Active shape model segmentation using a non-linear appearance model: application to 3D AAA segmentation, Technical report UU-CS-2003-013, Institute of Information and Computing Sciences, Utrecht University (2003)

  25. Bresson X., Vandergheynst P., Thiran J.: A variational model for object segmentation using boundary information and shape prior driven by the Mumford-shad functional. Int. J. Comput. Vis. 68(2), 145–162 (2006)

    Article  Google Scholar 

  26. Jolly, M.: Combining edge, region, and shape information to segment the left ventricle in cardiac MR images. In: Proceedings of MICCAI, pp. 482–490. Utrecht (2001)

  27. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 316–323. Hilton Head Island (2000)

  28. Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ksantini, R., Shariat, F., Boufama, B.: An efficient and fast active contour model for salient object detection. In: IEEE Canadian Conference on Computer and Robot Vision, pp. 124–131. Kelowna, BC (2009)

  30. Li, C., Kao, C., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.1–7. Washington, DC (2007)

  31. Li C., Kao C., Gore J.C., Ding Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  32. Li, C., Xu, C., Anderson, A.W., Gore, J.C.: MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework. In: International Conference on Information Processing in Medical Imaging (IPMI’09), pp.288–299. Williamsburg (2009)

  33. Lankton, S., Nain, D., Yezzi, A., Tannenbaun, A.: Hybrid geodesic region-based curve evolutions for image segmentation. In: SPIE Medical Imaging 2007 Symposium, 6510 (2007)

  34. Wang L., Hei L., Mishra A., Li C.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  MATH  Google Scholar 

  35. Zhang K., Song H., Zhang L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)

    Article  MATH  Google Scholar 

  36. Liu, H., Chen, Y., Chen, W.: Neighborhood aided implicit active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 841–848. HK, China (2006)

  37. Xu, C., Yezzi Jr., A., Prince, J.: On the relationship between parametric and geometric active contours. In: Processing of 34th Asilomar Conference on Signals Systems and Computers, pp. 483–489. Pacific Grove (2000)

  38. Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  39. Bresson, X., Chan, T.F.: Non-local unsupervised variational image segmentation models, CAM-report-08-67. Department of Mathematics, University of California, Los Angeles (2008)

  40. Grandall M.G., Evans L.C., Gariepy R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    Google Scholar 

  41. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach.Intell. 12(7), 629–640 (1990)

    Article  Google Scholar 

  42. Shi, Y., Karl, W.C.: Real-time tracking using level sets. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 31–34. San Diego (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Duan, F., Zhou, M. et al. Active contour model combining region and edge information. Machine Vision and Applications 24, 47–61 (2013). https://doi.org/10.1007/s00138-011-0363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0363-7

Keywords

Navigation