Skip to main content
Log in

Automated identification of thoracolumbar vertebrae using orthogonal matching pursuit

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

A computer-assisted system that can automatically provide rapid localization and accurate labeling of vertebral disks and bodies is a highly desirable tool due to the large demand for the diagnostic imaging and surgical planning of the vertebral column structures. However, a reliable detection and definitive labeling of vertebrae can be difficult due to factors such as the limited imaging coverage and various vertebral anomalies particularly in the thoracolumbar and lumbosacral junctions. In this paper, we investigate the problem of identifying the last thoracic and first lumbar vertebrae in CT images. The main purpose of this study is to improve the accuracy of labeling vertebrae of an automatic spine labeling system especially when the field of view is limited in the lower spine region. We present a dictionary-based classification method using a cascade of simultaneous orthogonal matching pursuit classifiers on 2D vertebral regions extracted from the maximum intensity projection images. The performance of the proposed method in terms of accuracy and speed has been validated by experimental results on hundreds of CT images collected from various clinical sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Konin, G.P., Walz, D.M.: Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. Am. J. Neuroradiol. 195, 465–466 (2010)

    Google Scholar 

  2. Gray, H.: Gray’s Anatomy. Running Press, Philadelphia (1901)

  3. Karageanes, S.J.: Thoracic spine. In: Principles of Manual Sports Medicine, pp. 263–294. Lippincott Williams& Wilkins, Baltimore (2005)

  4. Yao, J., O’Connor, S.D., Summers, R.M.: Automated spinal column extraction and partitioning, pp. 390–393. In: ISBI (2006)

  5. Schmidt, S., Kappes, J.H., Bergtholdt, M., Pekar, V., Dries, S.P.M., Bystrov, D., Schnörr, C.: Spine detection and labeling using a parts-based graphical model. In: IPMI, pp. 122–133 (2007)

  6. Dong, X., Zheng, G.: Automated vertebra identification from X-Ray images. In: ICIAR, issue 2, pp. 1–9 (2010)

  7. Huang, S.H., Chu, Y.H., Lai, S.H., Novak, C.L.: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans. Med. Imaging 28(10), 1595–1605 (2009)

    Article  Google Scholar 

  8. Ma, J., Lu, L., Zhan, Y., Zhou, X., Salganicoff, M., Krishnan, A.: Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. In: MICCAI, issue 1, pp. 19–27 (2010)

  9. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  10. Kelm, B., Zhou, S., Suehling, M., Zheng, Y., Wels, M., Comaniciu, D.: Detection of 3D spinal geometry using iterated marginal space learning. In: Proc. MICCAI Workshop on Medical Computer Vision—Recognition Techniques and Applications in Medical, Imaging (2010)

  11. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical learning and local articulated model. In: MICCAI (2012, p. to appear)

  12. Smyth, P.P., Taylor, C.J., Adams, J.E.: Vertebral shape: automatic measurement with active shape models. Radiology 211, 571–578 (1999)

    Article  Google Scholar 

  13. Long, L.R., Thoma, G.R.: Identification and classification of spine vertebrae by automated methods. In: Medical Imaging, : Proc. SPIE 4322, pp. 1478–1479 (2001)

  14. Peng, Z., Zhong, J., Wee, W.G., Lee, J.H.: Automated vertebra segmentation and quantification algorithm of the whole spine MR images. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2005)

  15. Pekar, V., Bystrov, D., Heese, H.S., Dries, S.P.M., Schmidt, S., Grewer, R., den Harder, C.J., Bergmans, R.C., Simonetti, A.W., van Muiswinkel, A.: Automated planning of scan geometries in spine MRI scans. In: MICCAI, issue 1, pp. 601–608 (2007)

  16. Corso, J.J., Alomari, R.S., Chaudhary, V.: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: MICCAI, issue 1, pp. 202–210 (2008)

  17. Dong, X., Lu, H., Sakurai, Y., Yamagata, H., Zheng, G., Reyes, M.: Automated intervertebral disc detection from low resolution, sparse MRI images for the planning of scan geometries. In: MLMI, pp. 10–17 (2010)

  18. Stern, D., Likar, B., Pernus, F., Vrtovec, T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys. Med. Biol. 55(1), 247 (2010)

    Article  Google Scholar 

  19. Stern, D., Likar, B., Pernus, F., Vrtovec, T.: Segmentation of vertebral bodies in MR images based on geometrical models in 3D. In: MIAR, pp. 419–428 (2010)

  20. Herring, J.L., Dawant, B.M.: Automatic lumbar vertebral identification using surface-based registration. J. Biomed. Informa. 34(2), 74–84 (2001)

    Google Scholar 

  21. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    Article  MATH  Google Scholar 

  22. Phillips, P.J.: Matching pursuit filters applied to face identification. IEEE Trans. Image Process. 7(8), 1150–1164 (1998)

    Article  Google Scholar 

  23. Mendels, F., Thiran, J.P., Vandergheynst, P.: Matching pursuit-based shape representation and recognition using scale-space. Int. J. Imaging Syst. Technol. 6(15), 162–180 (2006)

    Article  Google Scholar 

  24. Lee, Y.-S., Ho, J., Hwang, W.-L., Huang, C.-L.: Iris recognition based on matching pursuits. In: Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 183–187 (2008)

  25. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR, issue 1, pp. 511–518 (2001)

  26. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  27. Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), pp. 1222–1228 (2004) [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2004.57

  28. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  29. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  30. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Jian, B. & Zhou, X.S. Automated identification of thoracolumbar vertebrae using orthogonal matching pursuit. Machine Vision and Applications 24, 1331–1339 (2013). https://doi.org/10.1007/s00138-012-0453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0453-1

Keywords

Navigation