Skip to main content

Advertisement

Log in

Harmony search-based hybrid stable adaptive fuzzy tracking controllers for vision-based mobile robot navigation

  • Full Length Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper the harmony search (HS) algorithm and Lyapunov theory are hybridized together to design a stable adaptive fuzzy tracking control strategy for vision-based navigation of autonomous mobile robots. The proposed variant of HS algorithm, with complete dynamic harmony memory (named here as DyHS algorithm), is utilized to design two self-adaptive fuzzy controllers, for \(x\)-direction and \(y\)-direction movements of a mobile robot. These fuzzy controllers are optimized, both in their structures and free parameters, such that they can guarantee desired stability and simultaneously they can provide satisfactory tracking performance for the vision-based navigation of mobile robots. In addition, the concurrent and preferential combinations of global-search capability, utilizing DyHS algorithm, and Lyapunov theory-based local search method, are employed simultaneously to provide a high degree of automation in the controller design process. The proposed schemes have been implemented in both simulation and real-life experiments. The results demonstrate the usefulness of the proposed design strategy and shows overall comparable performances, when compared with two other competing stochastic optimization algorithms, namely, genetic algorithm and particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rueb, K.D., Wong, A.K.C.: Structuring free space as a hypergraph for roving robot path planning and navigation. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 263–273 (1987)

    Article  Google Scholar 

  2. Habib, M.K., Yuta, S.: Efficient online path planning algorithm and navigation for a mobile robot. Int. J. Electron. 69(2), 187–210 (1990)

    Article  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nilsson, N.J.: Principles of artificial intelligence. Tioga Publishing Company, USA (1980)

    MATH  Google Scholar 

  5. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Auto. 16(5), 615–620 (2000)

    Article  Google Scholar 

  6. Valavanis, K.P., Hebert, T., Kolluru, R., et al.: Mobile robot navigation in 2-D dynamic environments using an electrostatic potential field. IEEE Trans. Syst. Man Cybern. A Syst. Humans 30(2), 187–196 (2000)

    Google Scholar 

  7. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn. 31(1–3), 29–53 (1998)

    Article  MATH  Google Scholar 

  8. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method. Auton. Robots 13(3), 207–222 (2002)

    Article  MATH  Google Scholar 

  9. Ren, J., McIsaac, K.A., Patel, R.V.: Modified Newton’s method applied to potential field based navigation for nonholonomic robots in dynamic environments. Robotica 26, 285–294 (2008)

    Google Scholar 

  10. Ashokaraj, I.A.R., Silson, P.M.G., Tsourdos, A., White, B.A.: Robust sensor-based navigation for mobile robots. IEEE Trans. Instrum. Meas. 58(3), 551–556 (2009)

    Article  Google Scholar 

  11. Nirmal Singh, N., Chatterjee, A., Chatterjee, A., Rakshit, A.: A two-layered subgoal based mobile robot navigation algorithm with vision system and IR sensors. Measurement 44, 620–641 (2011)

    Google Scholar 

  12. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. (2012). (published online on 07 February 2012)

  13. Gueaieb, W., Miah, Md.S.: An intelligent mobile robot navigation technique using RFID technology. IEEE Trans. Instrum. Meas. 57(9), 1908–1917 (2008)

    Google Scholar 

  14. DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)

    Article  Google Scholar 

  15. Shi, Z., Liu, Z., Wu, X., Xu, W.: Feature selection for reliable data association in visual SLAM. Mach. Vis. Appl. (2012). (published online on 07 July)

  16. Shiao, Y., Yang, J., Su, D.: Path tracking laws and implementation of a vision-based wheeled mobile robot. WSEAS Trans. Circuits Syst. 12(7), 965–976 (2008)

    Google Scholar 

  17. Das Sharma, K., Chatterjee, A., Rakshit, A.: A PSO-lyapunov hybrid stable adaptive fuzzy tracking control approach for vision based robot navigation. IEEE Trans. Instrum. Meas. 61(7), 1908–1914 (2012)

    Google Scholar 

  18. Chatterjee, A., Watanabe, K.: An adaptive fuzzy strategy for motion control of robot manipulators. Soft Comput. 9(3), 185–193 (2005)

    Google Scholar 

  19. Chatterjee, A., Chatterjee, R., Matsuno, F., Endo, T.: Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling. IEEE Trans. Ind. Electron. 55(3), 1256–1270 (2008)

    Article  Google Scholar 

  20. Chatterjee, A., Chatterjee, R., Matsuno, F., Endo, T.: Neuro-fuzzy state modeling of flexible robotic arm employing dynamically varying cognitive and social component based PSO. Measurement 40(6), 628–643 (2007)

    Article  Google Scholar 

  21. Chatterjee, A., Watanabe, K.: An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators. Neural Comput. Appl. 15(1), 55–61 (2005)

    Article  Google Scholar 

  22. Chatterjee, A., Pulasinghe, K., Watanabe, K., Izumi, K.: A particle swarm optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans. Ind. Electron. 52(6), 1478–1489 (2005)

    Article  Google Scholar 

  23. Banerjee, S., Chakrabarty, A., Maity, S., Chatterjee, A.: Feedback linearizing indirect adaptive fuzzy control with foraging based on-line plant model estimation. Appl. Soft Comput. 11(4), 3441–3450 (2011)

    Article  Google Scholar 

  24. Chakrabarty, A., Banerjee, S., Maity, S., Chatterjee, A.: Fuzzy model predictive control of non-linear processes using convolution models and foraging algorithms. Measurement (2013, accepted). http://dx.doi.org/10.1016/j.measurement.2012.11.046

  25. Bhattacharya, S., Chatterjee, A., Munshi, S.: An improved PID-type fuzzy controller employing individual fuzzy P, fuzzy I and fuzzy D controllers. Trans. Inst. Measure. Control 25(4), 352–372 (2003)

    Article  Google Scholar 

  26. Bhattacharya, S., Chatterjee, A., Munshi, S.: A new self-tuned PID-type fuzzy controller as a combination of two-term controllers. ISA Trans. 43(3), 413–426 (2004)

    Article  Google Scholar 

  27. Das Sharma, K., Chatterjee, A., Rakshit, A.: Design of a hybrid stable adaptive fuzzy controller employing Lyapunov theory and harmony search algorithm. IEEE Trans. Control Syst. Tech. 18(6), 1440–1447 (2010)

    Google Scholar 

  28. Das Sharma, K., Chatterjee, A., Rakshit, A.: Adaptive fuzzy controller design employing harmony search algorithm for a class of non-linear system, pp. 42–45. In: Proc. of National Conf. Instrumentation and Control, Kolkata, India (2011)

  29. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  30. Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization and Machine Learning. Kluwer, Boston (1989)

  31. Konar, A.: Computational Intelligence: Principles. In: Techniques and Applications. Springer, Berlin (2005)

  32. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2006)

    Google Scholar 

  33. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004)

    Article  Google Scholar 

  34. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1679 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tian, Y.-H., Bo, Y.-M., Gao, M.-F.: Harmony annealing algorithm for multi-dimensional function optimization. Comput. Simul. 21(10), 79–82 (2004)

    Google Scholar 

  36. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comp. Methods Appl. Mech. Engg. 194(36–38), 3902–3933 (2005)

    Article  MATH  Google Scholar 

  37. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38(3), 259–280 (2006)

    Article  Google Scholar 

  38. Geem, Z.W.: Recent Advances in Harmony Search Algorithm. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  39. Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar, L.T.: Intelligent control of an autonomous mobile robot using type-2 fuzzy logic. Eng. Lett. 13(2), 93–97 (2006)

    Google Scholar 

  40. Wang, L.X.: Stable adaptive fuzzy control of nonlinear system. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  41. Fischle, K., Schroder, D.: An improved stable adaptive fuzzy control method. IEEE Trans. Fuzzy Syst. 7(1), 27–40 (1999)

    Article  Google Scholar 

  42. Das Sharma, K., Chatterjee, A., Rakshit, A.: A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Google Scholar 

  43. Das Sharma, K., Chatterjee, A., Matsuno, F.: A Lyapunov theory and stochastic optimization based stable adaptive fuzzy control methodology, pp. 1839–1844. In: Proc. of SICE Intl. Conf. Instrumentation, Control and Information Technology, Japan (2008)

  44. Alia, O.M., Mandava, R., Ramachandram, D., Aziz, M.E.: Dynamic fuzzy clustering using Harmony Search with application to image segmentation. In: Proc. IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 538–543 (2009) (14–17 Dec. 2009)

  45. Singh, N.N.: Vision based autonomous navigation of mobile robots. Jadavpur University, Ph.D. dissertation (2010)

  46. Sasaki, T., Brscic, D., Hashimoto, H.: Human-observation-based extraction of path patterns for mobile robot navigation. IEEE Trans. Ind. Electron. 57(4), 1401–1410 (2010)

    Article  Google Scholar 

  47. Subramanian, R., Spalding, E.P., Ferrier, N.J.: A high throughput robot system for machine vision based plant phenotype studies. Mach. Vis. Appl. (2012). (published online on 16 June)

  48. Kim, P.G., Park, C.G., Jong, Y.H., Yun, J.H., Mo, E.J., Kim, C.S., Jie, M.S., Hwang, S.C., Lee, K.W.: Obstacle avoidance of a mobile robot using vision system and ultrasonic sensor. In: Proc. 3rd Intl. Conf. on Advanced Intelligent Computing Theories and Applications, ICIC’07, vol. 4681, pp. 545–553 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Das Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das Sharma, K., Chatterjee, A. & Rakshit, A. Harmony search-based hybrid stable adaptive fuzzy tracking controllers for vision-based mobile robot navigation. Machine Vision and Applications 25, 405–419 (2014). https://doi.org/10.1007/s00138-013-0515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0515-z

Keywords

Navigation