Skip to main content
Log in

Background subtraction model based on color and depth cues

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Background subtraction consists of segmenting objects in movement in a video captured by a static camera. This is typically performed using color information, but it leads to wrong estimations due to perspective and illumination issues. We show that multimodal approaches based on the integrated use of color and depth cues produce more accurate and robust results than using either data source independently. Depth is less affected by issues such as shadows or foreground objects similar to background. However, objects close to the background may not be detected when using only range information, being color information complementary in those cases. We propose an extension of a well-known background subtraction technique which fuses range and color information, as well as a post-processing mask fusion stage to get the best of each feature. We have evaluated the method proposed using a well-defined dataset and different disparity estimation algorithms, showing the benefits of our method for fusion color and depth cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Appiah, K., Hunter, A.: A single-chip fpga implementation of real-time adaptive background model. In: Proceedings of 2005 IEEE International Conference on Field-Programmable Technology, pp. 95–102 (2005)

  2. Bak, A., Bouchafa, S., Aubert, D.: Dynamic objects detection through visual odometry and stereo-vision: a study of inaccuracy and improvement sources. Mach. Vis. Appl., 1–17 (2011). doi:10.1007/s00138-011-0389-x

  3. Barranco, F., Diaz, J., Gibaldi, A., Sabatini, S.P., Ros, E.: Vector disparity sensor with vergence control for active vision systems. Sensors 12(2), 1771–1799 (2012). doi:10.3390/s120201771, http://www.mdpi.com/1424-8220/12/2/1771

  4. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnorr, C.: Variational optical flow computation in real time. IEEE Trans. Image Process. 14(5), 608–615 (2005). doi:10.1109/TIP.2005.846018

    Article  MathSciNet  Google Scholar 

  5. Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944 (2011)

  6. Butler, D.A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., Kim, D.: Shake’n’sense: reducing interference for overlapping structured light depth cameras. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems. ACM, New York CHI ’12, pp. 1933–1936 (2012). doi:10.1145/2208276.2208335

  7. Chiranjeevi, P., Sengupta, S.: Spatially correlated background subtraction, based on adaptive background maintenance. J. Visual Commun. Image Rep. 23(6), 948–957 (2012). doi:10.1016/j.jvcir.2012.06.004

    Article  Google Scholar 

  8. Crabb, R., Tracey, C., Puranik, A., Davis, J.: Real-time foreground segmentation via range and color imaging. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08, pp. 1–5 (2008). doi:10.1109/CVPRW.2008.4563170

  9. Farcas, D., Marghes, C., Bouwmans, T.: Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach. Vis. Appl. 23, 1083–1101 (2012). doi:10.1007/s00138-012-0421-9

    Article  Google Scholar 

  10. Fernandez-Sanchez, E.J.: http://atcproyectos.ugr.es/mvision/ (2012)

  11. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 755–762 (2010). doi:10.1109/CVPR.2010.5540141

  12. Gordon, G., Darrell, T., Harville, M., Woodfill, J.: Background estimation and removal based on range and color. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2 vol. (xxiii+637+663) (1999). doi:10.1109/CVPR.1999.784721

  13. Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012). doi:10.1109/CVPRW.2012.6238919

  14. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006). doi:10.1109/TPAMI.2006.68

    Article  Google Scholar 

  15. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008). doi:10.1109/TPAMI.2007.1166

    Article  Google Scholar 

  16. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012) doi:10.1109/CVPRW.2012.6238925

  17. Huang, D.Y., Chen, C.H., Hu, W.C., Su, S.S.: Reliable moving vehicle detection based on the filtering of swinging tree leaves and raindrops. J. Visual Commun. Image Rep. 23(4), 648–664 (2012). doi:10.1016/j.jvcir.2012.03.002

    Article  Google Scholar 

  18. Ivanov, Y., Bobick, A., Liu, J.: Fast lighting independent background subtraction. Int. J. Comput. Vis. 37, 199–207 (2000). doi:10.1023/A:1008107805263

    Google Scholar 

  19. Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. IEEE Workshop on Motion and Video Computing, vol 22 (2002)

  20. Karaman, M., Goldmann, L., Yu, D., Sikora, T.: Comparison of static background segmentation methods. In. Proc. SPIE 5960, vol. 5960 (2005)

  21. Khan, S., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006, Lecture Notes in Computer Science, vol. 3954, pp. 133–146. Springer, Berlin (2006)

    Chapter  Google Scholar 

  22. Kim, K., Davis, L.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006, Lecture Notes in Computer Science, vol. 3953, pp. 98–109. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foregroundbackground segmentation using codebook model. Real Time Imaging 11(3), 172–185 (2005) (special Issue on Video Object Processing)

    Google Scholar 

  24. Kim, S., Yun, K., Yi, K., Kim, S., Choi, J.: Detection of moving objects with a moving camera using non-panoramic background model. Mach. Vis. Appl., 1–14 (2012). doi:10.1007/s00138-012-0448-y

  25. Kohonen, T.: Learning vector quantization. Neural Netw. 1, 3–16 (1988)

    Article  Google Scholar 

  26. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 407–414 (2005). doi:10.1109/CVPR.2005.91

  27. Kryjak, T., Komorkiewicz, M., Gorgon, M.: Real-time background generation and foreground object segmentation for high-definition colour video stream in fpga device. J. Real Time Image Process., 1–17 (2012). doi:10.1007/s11554-012-0290-5

  28. Maimone, A., Fuchs, H.: Reducing interference between multiple structured light depth sensors using motion. In: 2012 IEEE Virtual Reality Short Papers and Posters (VRW), pp. 51–54 (2012). doi:10.1109/VR.2012.6180879

  29. Microsoft Corporation (2012). http://www.microsoft.com/en-us/kinectforwindows/

  30. Molina, J., Escudero-Violo, M., Signoriello, A., Pards, M., Ferrn, C., Bescs, J., Marqus, F., Martnez, J.: Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models. Mach. Vis. Appl., 1–18 (2011). doi:10.1007/s00138-011-0364-6

  31. Pauwels, K., Krger, N., Lappe, M., Wrgotter, F., Van Hulle, M.: A cortical architecture on parallel hardware for motion processing in real time. J. Vis. 10(10) (2010). doi:10.1167/10.10.18

  32. Pelletier, S., Cooperstock, J.: Real-time free viewpoint video from a range sensor and color cameras. Mach. Vis. Appl., 1–13 (2012). doi:10.1007/s00138-012-0428-2

  33. Pham, V.Q., Takahashi, K., Naemura, T.: Foreground-background segmentation using iterated distribution matching. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2113–2120 (2011). doi:10.1109/CVPR.2011.5995356

  34. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 918–923 (2003)

    Article  Google Scholar 

  35. Ralli, J., Diaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl., 1–13 (2011). doi:10.1007/s00138-011-0360-x

  36. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  37. Rodriguez-Gomez, R., Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Codebook hardware implementation on fpga for background subtraction. J. Real Time Image Process., 1–15 (2012). doi:10.1007/s11554-012-0249-6

  38. Rodriguez-Gomez, R., Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Fpga implementation for real-time background subtraction based on horprasert model. Sensors 12(1), 585–611 (2012). http://www.mdpi.com/1424-8220/12/1/585/

    Google Scholar 

  39. Schiller, I., Koch, R.: Improved video segmentation by adaptive combination of depth keying and mixture-of-gaussians. In: Heyden, A., Kahl, F. (eds.) Image Analysis, Lecture Notes in Computer Science, vol. 6688, pp. 59–68. Springer, Berlin (2011)

    Google Scholar 

  40. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp 2 vol. (xxiii+637+663) (1999)

  41. Tian, Y., Duan, F., Zhou, M., Wu, Z.: Active contour model combining region and edge information. Mach. Vis. Appl., pp. 1–15 (2011). doi:10.1007/s00138-011-0363-7

  42. Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E.: A novel architecture for a massively parallel low level vision processing engine on chip. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp. 3033–3039 (2010). doi:10.1109/ISIE.2010.5637211

  43. Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E.: Massive parallel-hardware architecture for multiscale stereo, optical flow and image-structure computation. IEEE Trans Circuits Syst. Video Technol. 22(2), 282–294 (2012). doi:10.1109/TCSVT.2011.2162260

    Article  Google Scholar 

  44. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: IEEE International Conference on Computer Vision, vol. 1. IEEE Computer Society, Los Alamitos, p. 255 (1999)

  45. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993). doi:10.1109/83.217222

    Article  Google Scholar 

  46. Xue, K., Liu, Y., Ogunmakin, G., Chen, J., Zhang, J.: Panoramic gaussian mixture model and large-scale range background substraction method for ptz camera-based surveillance systems. Mach. Vis. Appl., 1–16 (2012). doi:10.1007/s00138-012-0426-4

  47. Zhang, B., Zhong, B., Cao, Y.: Complex background modeling based on texture pattern flow with adaptive threshold propagation. J. Visual Commun. Image Rep. 22(6), 516–521 (2011). doi:10.1016/j.jvcir.2011.05.001

    Article  Google Scholar 

  48. Zhang, Q., Ngan, K.N.: Multi-view video based multiple objects segmentation using graph cut and spatiotemporal projections. J. Visual Commun. Image Rep. 21(56), 453–461 (2010). doi:10.1016/j.jvcir.2009.09.005 (special issue on Multi-camera Imaging, Coding and Innovative Display)

    Google Scholar 

  49. Zhang, Y., Zhang, X., Maybank, S., Yu, R.: An ir and visible image sequence automatic registration method based on optical flow. Mach. Vis. Appl., 1–12 (2012). doi:10.1007/s00138-012-0465-x

  50. Zhu, J., Liao, M., Yang, R., Pan, Z.: Joint depth and alpha matte optimization via fusion of stereo and time-of-flight sensor. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 453–460 (2009). doi:10.1109/CVPR.2009.5206520

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Fernandez-Sanchez.

Additional information

This work was supported by the projects of excellence from Junta de Andalucia MULTIVISION (TIC-3873) and ITREBA (TIC-5060), the national project ARC-VISION (TEC2010-15396) and the EU Project TOMSY (FP7-270436).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Sanchez, E.J., Rubio, L., Diaz, J. et al. Background subtraction model based on color and depth cues. Machine Vision and Applications 25, 1211–1225 (2014). https://doi.org/10.1007/s00138-013-0562-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0562-5

Keywords

Navigation