Skip to main content
Log in

Features classification using geometrical deformation feature vector of support vector machine and active appearance algorithm for automatic facial expression recognition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a method for facial expression recognition in image sequences. Face is detected from the scene and then facial features are detected using image normalization, and thresholding techniques. Using an optimization algorithm the Candide wire frame model is adapted properly on the first frame of face image sequence. In the subsequent frames of image sequence facial features are tracked using active appearance algorithm. Once the model fits on the first frame, animation parameters of model are set to zero, to obtain the shape of model for the neutral facial expression of the same face. The last frame of the image sequence corresponds to greatest facial expression intensity. The geometrical displacement of the Candide wire frame nodes, between the neutral expression frame and the last frame, is used as an input to the multiclass support vector machine, which classifies facial expression into one of the class such as happy, surprise, sadness, anger, disgust, fear and neutral. This method is applicable for frontal as well as tilted faces with angle \(\pm 30\,^{\circ }, \pm 45\,^{\circ }, \pm 60\,^{\circ }\) with respect to y axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ekman, P., Friesen, W.V.: Facial Action Coding System Manual. Palo Alto Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  2. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recognit. 36(1), 259–275 (2003)

    Article  MATH  Google Scholar 

  3. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1424–1445 (2000)

    Article  Google Scholar 

  4. Lajevardi, S., Lech, M.: Facial expression recognition from image sequences using optimized feature selection. In: 23rd International Conference on Image and Vision Computing, pp. 1–6. New Zealand (2008)

  5. Viola, P., Jones, M.: Robust real-time object detection. Technical Report, Cambridge Research Laboratory, Technical Report Series (2001)

  6. Yacoob, Y., Davis, L.: Recognizing human facial expressions from long image sequences using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 636–642 (1996)

    Article  Google Scholar 

  7. Essa, I.A., Pentland, A.P.: Coding, analysis, interpretation, and recognition of facial expressionsl. IEEE Trans. Pattern Anal. Mach. Intell. 19, 757–763 (1997)

    Article  Google Scholar 

  8. Pentland, A., Moghaddam, B., starner, T.: View based and modular eigenspaces for face recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 84–91 (1994)

  9. Simoncelli, E.: Distributed representation and analysis of visual motion. Ph.D. thesis, Massachusetts Institute of Technology (1993)

  10. Kimura, S., Yachida, M.: Facial expression recognition and its degree estimation. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 295–300 (1997)

  11. Wu, H., Yokoyama, T., Pramadihanto, D., Yachinda, M.: Face and facial feature extraction from color image. In: Proceedings of the International Conference Automatic Face and Gesture Recognition, pp. 343–350 (1996)

  12. Cohn, J. F., Ziochower, A. J., lien, J. J., kanade, T.: Feature point tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of the International Conference Automatic Face and Gesture Recognition, pp. 396–401 (1998)

  13. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the Joint Conference Artificial Intelligence, pp. 674–680 (1981)

  14. Wang, M., Iwai, Y., Yachindai, M.: Expression recognition from time-sequential facial images by use of expression change model. In: Proceedings of the International Conference Automatic Face and Gesture Recognition, pp. 324–329 (1998)

  15. Buhmann, J., Lange, J., von der Malsburg, C.: Distortion invariant object recognition matching hierarchically labelled graphs. In: Proceedings of the International Joint Conference Neural Networks, pp. 155–159 (1989)

  16. Valstar, M., Patras, I., Pantic, M.: Facial action unit recognition using temporal templates. In: 13th IEEE International Workshop on Robot and Human Interactive, Communication, pp. 253–258 (2004)

  17. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Google Scholar 

  18. Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput Vis. 29, 5–28 (1998)

    Google Scholar 

  19. Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Comput. Vis. Image Underst. 91, 160–187 (2003)

    Google Scholar 

  20. Hai, T., Huang, T.: Connected vibrations: a modal analysis approach for non-rigid motion tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 735–740, June 1998

  21. Black, M.J., Yacoob, Y.: Recognizing facial expressions in image sequences using local parameterized models of image motion. lnt. J. Comput. Vis. 25(1)), 23–48 (1997)

    Article  Google Scholar 

  22. Kotsia, I., Pitas, I.: Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Trans. Image Process. 16, 172–187 (2007)

    Article  MathSciNet  Google Scholar 

  23. Bouguet, J.Y.: Pyramidal implementation of the Lucas-Kanade feature tracker. Technical Report Intel Corporation, Microprocessor Research Labs (1999)

  24. Cootes, T.F., Edwards, G., Taylor, C.J.: Active appearance models. In: Proceedings of the 5th European Conference on Computer Vision, pp. 484–498 (1998)

  25. Patil, R., Sahula, V., Mandal, A.: Automatic detection of facial feature points in image sequences. International Conference on Image Information Processing ICIIP, Nov 2011

  26. Welsh, B.: Model based coding of images. Ph.D. dessertation, British Telecom Research Lab, Jan 1991

  27. Ahlberg, J.: Wincandide 1.3 user’s manual. Technical Report. Report No. LiTH-ISY-R-2344, Department of EE, Linkoping University (2001)

  28. Weisstein, E. W.: Barycentric coordinates, MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/BarycentricCoordinates.html. Accessed 24 Jan 2010

  29. Ahlberg, J.: Fast image warping for active models. Technical Report. Report No. LiTH-ISY-R-2355, Department of EE, Linkoping University (2001)

  30. Ahlberg, J.: An active model for facial feature tracking. EURASIP J. Appl. Signal Process. 2002, 566–571 (2001)

    Article  Google Scholar 

  31. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. National Taiwan University, Taipei 106, Taiwan

  32. Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings of the IEEE International Conference on Face and Gesture Recognition, pp. 46–53, March 2000

  33. Nordstrøm, M. M., Larsen, M., Sierakowski, J., Stegmann, M. B.: The IMM face database—an annotated dataset of 240 face images. May 2004

  34. Kyrkou, C., Theocharides, T.: Scope: towards a systolic array for SVM object detection. Embed. Syst. Lett. IEEE 1, 46–49 (2009)

    Article  Google Scholar 

  35. Mathur, A., Foody, G.: Multiclass and binary SVM classification: implications for training and classification users. Geosci. Remote Sens. Lett. IEEE 5, 241–245 (2008)

    Article  Google Scholar 

  36. Liu, H., wei Huang, Y., Liu, D.: Multi-class surface EMG classification using support vector machines and wavelet transform. In: 8th World Congress on Intelligent Control and Automation, pp. 2963–2967, July 2010

  37. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Google Scholar 

  38. Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report. CSD-TR-98-04 (2004)

  39. Strom, J., Davoine, F., Ahlberg, J.: Very low bit rate facial texture coding. In: Proceedings of the International Workshop on Synthetic/Natural Hybrid Coding and 3D, Imaging, pp. 237–240, Sept 1997

  40. Burges, C. J.: A tutorial on support vector machines for pattern recognition. J. Data Min. Knowl. Disc 2, 121–167 (1998)

    Google Scholar 

  41. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  42. Anderson, K., Peter, W.: A real time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36, 96–105 (2006)

    Article  Google Scholar 

  43. Lanitis, A., Taylor, C., Cootes, T.: Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997)

    Article  Google Scholar 

  44. Lien, C. J., Kanade, T., Cohn, J. F., Li, C.: Detection, tracking, and classification of action units in facial expressions. J. Robot Auton. Syst. (1999)

  45. Tian, Y., Kanade, T., Cohn, J.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23, 97–115 (2001)

    Article  Google Scholar 

  46. Ming-Hsuan, Y., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  47. Gokturk, S. B., Tomasi, C., Girod, B., Bouguet, J.-Y.: Model-based face tracking for view-independent facial expression recognition. In: Proceedings of the 5th IEEE International Conference Automatic Face and Gesture Recognition, pp. 287–293, May 2002

  48. Pontil, M., Verri, A.: Support vector machines for 3D object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20, 637–646 (1998)

    Article  Google Scholar 

  49. Drucker, H., Donghui, W., Vapniki, V.: Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10, 1048–1054 (1999)

    Article  Google Scholar 

  50. Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: SVM and Kernel Methods Matlab Toolbox. Perception Systems Information. INSA de Rouen, France (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh A. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, R.A., Sahula, V. & Mandal, A.S. Features classification using geometrical deformation feature vector of support vector machine and active appearance algorithm for automatic facial expression recognition. Machine Vision and Applications 25, 747–761 (2014). https://doi.org/10.1007/s00138-014-0594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-014-0594-5

Keywords

Navigation