Skip to main content
Log in

A self-adaptive matched filter for retinal blood vessel detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Retinal fundus images are widely studied in medicine for the detection of certain pathologies such as diabetes and glaucoma, the two major reasons for blindness. In this paper, a self-adaptive matched filter for the detection of blood vessels in the retinal fundus images is proposed. In particular, a novel synergistic combination of the vesselness filter with high sensitivity and the matched filter with high specificity is obtained using orientation histogram. Experiments on the publicly available DRIVE database clearly show that the proposed strategy outperforms several existing methods. Comparable performance with some of the state-of-the-art methods has also been obtained on the STARE and CHASE databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kanski, J.J.: Clinical Ophthalmology, 6th edn. Elsevier Health Sciences, London (2007)

    Google Scholar 

  2. Zhang, M.: Blood vessel detection in retinal images and its application in diabetic retinopathy screening. Ph.D. Thesis, Texas A & M University (2008)

  3. Rao, K.P.: Detection of Blood Vessel in the Retina Image. Oakland University, USA (2006)

    Google Scholar 

  4. Mirsharifa, Q., Tajeripoura, F., Pourreza, H.: Automated characterization of blood vessels as arteries and veins in retinal images. Comput. Med. Imaging Graphics 37, 607–617 (2013)

    Article  Google Scholar 

  5. Gegundez-Arias, M.E., Marin, D., Bravo, J.M., Suero, A.: Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graphics 37, 386–393 (2013)

    Article  Google Scholar 

  6. Rothaus, K., Rhiem, P., Jiang, X.: Separation of the retinal vascular graph in arteries and veins upon structural knowledge. Image Vision Comput. 27(7), 864–875 (2009)

    Article  Google Scholar 

  7. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W., Colchester, A., Delp, S. (eds.) 1994, Medical Image Computing and Computer-Assisted Intervention MICCAI’98, Lecture Notes in Computer Science, vol. 1496, pp. 130–137. Springer, Berlin (1998)

  8. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8, 263–269 (1989)

    Article  Google Scholar 

  9. Fraz, M.M., Remagnino, P., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images a survey. Computer Methods Progr. Biomed. 108, 407–433 (2012)

    Article  Google Scholar 

  10. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)

    Article  Google Scholar 

  11. ZAlpaydin, E.: Introduction to Machine Learning, 2nd edn. MIT Press, USA (2010)

    Google Scholar 

  12. Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computers Biol. Med. 37, 262–267 (2007)

    Article  Google Scholar 

  13. Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Proceedings, pp. 21–24. IEEE International Symposium on Circuits and Systems, Bangkok (2003)

  14. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers Biol. Med. 40, 438–445 (2010)

    Article  Google Scholar 

  15. Cinsdikici, M.G., Aydin, D.: Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Computer Methods Progr. Biomed. 96, 85–95 (2009)

    Article  Google Scholar 

  16. Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Recogn. Anal. Mach. Intell. 25, 131–137 (2003)

    Article  Google Scholar 

  17. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging. 28, 1488–1497 (2009)

    Article  Google Scholar 

  18. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23, 501–509 (2004)

    Article  Google Scholar 

  19. Marn, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging. 30, 146–158 (2011)

    Article  Google Scholar 

  20. Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graphics 34, 213–227 (2010)

    Article  Google Scholar 

  21. Kaba, D., Wang, C., Li Y., Salazar-Gonzalez, A., Liu X., Serag A.: Retinal blood vessels extraction using probabilistic modelling. In: Health Information Science and Systems (2014)

  22. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One 7(3), 1–12 (2012)

    Article  Google Scholar 

  23. Liu, J., White, J.M., Summers, R.M.: Automated detection of blob structures by hessian analysis and object scale. In: Proceedings of IEEE International Conference on Image Processing, pp. 841–844 (2010)

  24. Marimon, D., Ebrahimi, T.: Orientation histogram-based matching for region tracking. IEEE International Workshop on Image Analysis for Multimedia Interactive Services (2007)

  25. Niemeijer, M., Staal, J.J., Van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. SPIE Med. Imaging. 5370, 648–656 (2004)

    Google Scholar 

  26. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threhsold probing of a matched filter response. IEEE Trans. Med. Imaging. 19, 203–210 (2000)

    Article  Google Scholar 

  27. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22, 951–958 (2003)

    Article  Google Scholar 

  28. Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE TBME 59(9), 2538–2548 (2012)

    Google Scholar 

  29. Villalobos-Castaldi, F., Felipe-Riveron, E., Sanchez-Fernandez, L.: A fast, efficient and automated method to extract vessels from fundus images. J. Vis. 13, 263–270 (2010)

    Article  Google Scholar 

  30. MATLAB 2011b, The MathWorks Inc., Natick, MA, USA.  www.mathworks.com

  31. Fraz, M.M., Barman, S.A., Remagnino, P., Hoppe, A., Basit, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G.: An approach to localize the retinal blood vessels using bit planes and centerline detection. Computer Methods Progr. Biomed. 108(2), 600–616 (2012)

    Article  Google Scholar 

  32. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11, 47–61 (2007)

    Article  Google Scholar 

  33. Abd-Almageed, W., El-Osery, A., Smith, C. E.: Non-parametric expectation maximization: a learning automata approach. In: IEEE Proceedings of Int. Conf. System, Man and Cybernetics, Washington D.C., pp. 1–6 (2003)

  34. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Zifan, A., Chapman, B.E.: Automatic detection of coronary vessels using mutli-scale texture dictionaries. In: Proceedings of IEEE International Conference on Healthcare Informatics, p. 115 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, T., Jha, D.K., Chowdhury, A.S. et al. A self-adaptive matched filter for retinal blood vessel detection. Machine Vision and Applications 26, 55–68 (2015). https://doi.org/10.1007/s00138-014-0636-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-014-0636-z

Keywords

Navigation