Skip to main content
Log in

Multi-modality imagery database for plant phenotyping

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Among many applications of machine vision, plant image analysis has recently began to gain more attention due to its potential impact on plant visual phenotyping, particularly in understanding plant growth, assessing the quality/performance of crop plants, and improving crop yield. Despite its importance, the lack of publicly available research databases containing plant imagery has substantially hindered the advancement of plant image analysis. To alleviate this issue, this paper presents a new multi-modality plant imagery database named “MSU-PID,” with two distinct properties. First, MSU-PID is captured using four types of imaging sensors, fluorescence, infrared, RGB color, and depth. Second, the imaging setup and the variety of manual labels allow MSU-PID to be suitable for a diverse set of plant image analysis applications, such as leaf segmentation, leaf counting, leaf alignment, and leaf tracking. We provide detailed information on the plants, imaging sensors, calibration, labeling, and baseline performances of this new database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baker, N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008)

    Article  Google Scholar 

  2. Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V.: Re-identification with RGB-D sensors. In: First International Workshop on Re-Identification, pp. 433–442 (2012)

  3. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and Chamfer matching: two new techniques for image matching. In: Technical report, DTIC Document (1977)

  4. Butler, W.L., Hendricks, S.B., Siegelman, H.W.: Action spectra of phytochrome in vitro. Photochem. Photobiol. 3(4), 521–528 (1964)

    Article  Google Scholar 

  5. Chelle, M.: Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? Ecol. Model. 198(1), 219–228 (2006)

    Article  Google Scholar 

  6. Chen, D., Neumann, K., Friedel, S., Kilian, Benjamin, Chen, M., Altmann, T., Klukas, C.: Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26(12), 4636–4655 (2014)

    Article  Google Scholar 

  7. Chen, J., Liu, X.: Transfer learning with one-class data. Pattern Recognit. Lett. 37, 32–40 (2013)

    Article  Google Scholar 

  8. Chen, J., Liu, X., Lyu, S.: Boosting with side information. In: Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 563–577. Springer, New York (2013)

  9. Ding, Z., Ming, S., Fu, Y.: Latent low-rank transfer subspace learning for missing modality recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2014)

  10. Döös, B.R.: Population growth and loss of arable land. Glob. Environ. Change 12(4), 303–311 (2002)

    Article  Google Scholar 

  11. Eskins, K.: Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiol. Plant. 86(3), 439–444 (1992)

  12. Fahlgren, N., Gehan, M.A., Baxter, I.: Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24, 93–99 (2015)

    Article  Google Scholar 

  13. Furbank, R.T., Tester, M.: Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16(12), 635–644 (2011)

    Article  Google Scholar 

  14. Hansard, M., Lee, S., Choi, O., Horaud, R.: Time-of-Flight Cameras: Principles. Methods and Applications. Springer, New York (2013)

    Book  Google Scholar 

  15. Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: Proceedings of the European Conference on Computer Vision Workshops (ECCVW), pp. 105–116. Springer, New York ( 2014)

  16. Houle, D., Govindaraju, D.R., Omholt, S.: Phenomics: the next challenge. Nat. Rev. Genet. 11(12), 855–866 (2010)

    Article  Google Scholar 

  17. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In:Technical Report 07-49, University of Massachusetts, Amherst (2007)

  18. Johannsen, W.L.: Erblichkeit in Populationen und in reinen Linien. Gustav Fischer, Germany (1903)

  19. Kramer, D., Cruz, J., Hall, C., Kovac, W.K., Zegarac, R.: Plant Phenometrics Systems and Methods and Devices Related Thereto. In: US Patent 20, 150, 204, 787 (2015)

  20. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., John Kress, W., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 502–516. Springer, New York (2012)

  21. Kevin, L., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824 (2011)

  22. McClung, C.R.: Plant circadian rhythms. Plant Cell 18(4), 792–803 (2006)

    Article  Google Scholar 

  23. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. (2015). doi:10.1016/j.patrec.2015.10.013

  24. Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process. Mag. 32(4), 126–131 (2015)

    Article  Google Scholar 

  25. Nguyen, V.D., Chew, M.T., Demidenko, S.: Vietnamese sign language reader using Intel Creative Senz3D. In: IEEE International Conference on Automation, Robotics and Applications (ICARA), pp. 77–82 (2015)

  26. Oxborough, Kevin: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J. Exp. Bot. 55(400), 1195–1205 (2004)

    Article  Google Scholar 

  27. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  28. Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.: Annotated image datasets of rosette plants. In:Technical Report FZJ-2014-03837 (2014)

  29. Schöttler, M.A., Tóth, S.Z., Boulouis, A., Kahlau, S.: Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b 6 f complex. J. Exp. Bot. 66(9), 2373–2400 (2015)

    Article  Google Scholar 

  30. Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 601–608 (2011)

  31. Söderkvist, O.: Computer vision classification of leaves from Swedish trees. In: Master thesis, Linköping University (2001)

  32. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), pp. 573–580 (2012)

  33. Sung, J., Ponce, C., Selman, B., Saxena, A.: Human activity detection from RGBD images. CoRR 64 (2011)

  34. Walter, A., Liebisch, F., Hund, A.: Plant phenotyping: from bean weighing to image analysis. Plant Methods 11(1), 14 (2015)

    Article  Google Scholar 

  35. Woolley, J.T.: Reflectance and transmittance of light by leaves. Plant Physiol. 47(5), 656–662 (1971)

    Article  Google Scholar 

  36. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2007)

  37. Yin, X., Liu, X., Chen, J., Kramer, D.M.: Multi-leaf alignment from fluorescence plant images. In: IEEE Winter Conference on Applications of Computer Vision (WACV), Steamboat Springs (2014)

  38. Yin, X., Liu, X., Chen, J., Kramer, D.M.: Multi-leaf tracking from fluorescence plant videos. In: Proceedings of the International Conference on Image Processing (ICIP), Paris (2014)

  39. Yin, X., Liu, X., Chen, J., Kramer, D.M.: Joint Multi-Leaf Segmentation, Alignment, and Tracking from Fluorescence Plant Videos (2015). arXiv:1505.00353

  40. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liu.

Additional information

J. A. Cruz and X. Yin equally contributed.

This research was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (award number DE-FG02-91ER20021), and by Center for Advanced Algal and Plant Phenotyping (CAAPP), Michigan State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, J.A., Yin, X., Liu, X. et al. Multi-modality imagery database for plant phenotyping. Machine Vision and Applications 27, 735–749 (2016). https://doi.org/10.1007/s00138-015-0734-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0734-6

Keywords

Navigation