Skip to main content
Log in

Cell tracking via Structured Prediction and Learning

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a new joint detection and tracking method for cell tracking. First, we develop a new procedure for generating an over-complete set of detection hypotheses via ellipse fitting, and then, we define several local events and their corresponding labeling variables to account for both biological behavior of cells and segmentation errors. The task of cell tracking is formulated as an integer linear programming problem with constraints and solved efficiently using commercial software. In addition, instead of learning local classifiers independently, we exploit block-coordinate Frank–Wolfe algorithm to learn the optimal parameters of our model under the framework of structured SVM. We also present the kernelized version of the learning algorithm which can boost the tracking performance further. Experimental results on public datasets show that our method is competitive with the state-of-the-art ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krzic, U., Gunther, S., Saunders, T.E., Streichan, S.J., Hufnagel, L.: Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9(7), 730–733 (2012)

    Article  Google Scholar 

  2. Tomer, R., Khairy, K., Amat, F., Keller, P.J.: Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9(7), 755–763 (2012)

    Article  Google Scholar 

  3. Meijering, E., Dzyubachyk, O., Smal, I., van Cappellen, W.A.: Tracking in cell and developmental biology. Semin. Cell Dev. Biol. 20(8), 894–902 (2009)

    Article  Google Scholar 

  4. Kanade, T., Yin, Z., Bise, R., Huh, S., Eom, S., Sandbothe, M.F., Chen, M.: Cell image analysis: algorithms, system and applications. In: 2011 IEEE Workshop on Applications of Computer Vision, 5-7 Jan. 2011, pp. 374–381 (2011)

  5. Meijering, E., Dzyubachyk, O., Smal, I.: Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012). doi:10.1016/B978-0-12-391857-4.00009-4

    Article  Google Scholar 

  6. González Serrano, G., Fusco, L., Pertz, O., Smith, K.: Automated quantification of morphodynamics for high-throughput live cell imaging datasets. In: IEEE International Symposium on Biomedical Imaging, pp. 664–667 (2013)

  7. Maska, M., Ulman, V., Svoboda, D., Matula, P., Matula, P.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)

    Article  Google Scholar 

  8. Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, N., Olivo-Marin, J.C., Zimmer, C.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process. 14(9), 1396–1410 (2005)

    Article  Google Scholar 

  9. Li, K., Miller, E.D., Chen, M., Kanade, T., Weiss, L.E., Campbell, P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12(5), 546–566 (2008)

    Article  Google Scholar 

  10. Dzyubachyk, O., van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.: Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imag. 29(3), 852–867 (2010)

    Article  Google Scholar 

  11. Dufour, A., Thibeaux, R., Labruyere, E., Guillen, N., Olivo-Marin, J.C.: 3-D active meshes: fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. IEEE Trans. Image Process. 20(7), 1925–1937 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Delgado-Gonzalo, R., Chenouard, N., Unser, M.: Fast parametric snakes for 3D microscopy. IEEE Int. Symp. Biomed. Imag. 2–5(2012), 852–855 (2012)

    Google Scholar 

  13. Maska, M., Danek, O., Garasa, S., Rouzaut, A., Munoz-Barrutia, A., Ortiz-de-Solorzano, C.: Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model. IEEE Trans. Med. Imag. 32(6), 995–1006 (2013)

    Article  Google Scholar 

  14. Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951–958 (2014)

    Article  Google Scholar 

  15. Chenouard, N., Bloch, I., Olivo-Marin, J.C.: Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2736–3750 (2013)

    Article  Google Scholar 

  16. Li, F., Zhou, X., Ma, J., Wong, S.T.: Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis. IEEE Trans. Med. Imag. 29(1), 96–105 (2010)

    Article  Google Scholar 

  17. Kausler, B.X., Schiegg, M., Andres, B., Lindner, M.: A discrete chain graph model for 3d+t cell tracking with high misdetection robustness. In: European Conference on Computer Vision, pp. 144–157 (2012)

  18. Lou, X., Schiegg, M., Hamprecht, F.A.: Active structured learning for cell tracking: algorithm, framework, and usability. IEEE Trans. Med. Imag. 33(4), 849–860 (2014)

    Article  Google Scholar 

  19. Magnusson, K.E.G., Jaldén, J.: A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages. In: IEEE International Symposium on Biomedical Imaging, pp. 382–385 (2012)

  20. Padfield, D., Rittscher, J., Roysam, B.: Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Med. Image Anal. 15(4), 650–668 (2011)

    Article  Google Scholar 

  21. Schiegg, M., Hanslovsky, P., Kausler, B.X., Hufnagel, L., Hamprecht, F.A.: Conservation tracking. In: IEEE International Conference on Computer Vision, pp. 2928–2935 (2013)

  22. Schiegg, M., Hanslovsky, P., Haubold, C., Koethe, U., Hufnagel, L., Hamprecht, F.A.: Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics 31(6), 948–956 (2015)

    Article  Google Scholar 

  23. Magnusson, K.E., Jalden, J., Gilbert, P.M., Blau, H.M.: Global linking of cell tracks using the Viterbi algorithm. IEEE Trans. Med. Imag. 34(4), 911–929 (2015)

  24. Turetken, E., Wang, X., Becker, C.J., Haubold, C., Fua, P.: Network flow integer programming to track elliptical cells in time-lapse sequences. IEEE Trans. Med. Imag. 36, 942 (2016). doi:10.1109/TMI.2016.2640859

    Article  Google Scholar 

  25. Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate frank-wolfe optimization for structural SVMs. In: International Conference on Machine Learning, Atlanta, United States, pp. 53–61 (2013)

  26. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  27. Kovesi, P.: MATLAB and octave functions for computer vision and image processing. http://www.peterkovesi.com/

  28. Prasad, D.K., Quek, C., Leung, M.K.H., Cho, S.Y.: A parameter independent line fitting method. In: Asian Conference on Pattern Recognition, pp. 441–445 (2011)

  29. Prasad, D.K., Leung, M.K.H., Quek, C.: ElliFit: An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method. Pattern Recognit. 46(5), 1449–1465 (2013)

    Article  MATH  Google Scholar 

  30. Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision. Found. Trends Comput. Graph. Vision 6(3–4), 185–365 (2011)

    MATH  Google Scholar 

  31. Solorzano, C.O., Kozubek, M., Meijering, E., noz Barrutia, A.M.: ISBI Cell Tracking Challenge (2014). http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Welcome.html

  32. Lofberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation, pp. 284–289 (2004)

  33. Bensch, R., Ronneberger, O.: Cell segmentation and tracking in phase contrast images using graph cut with asymmetric boundary costs. In: International Symposium on Biomedical Imaging, pp. 1220–1223 (2015)

  34. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  35. Matula, P., Maska, M., Sorokin, D.V., Matula, P., Ortiz-de-Solorzano, C., Kozubek, M.: Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PloS ONE 10(12), e0144959 (2015)

    Article  Google Scholar 

  36. IBM CPLEX. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant No.61174020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jiuqing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiuqing, W., Xu, C. & Xianhang, Z. Cell tracking via Structured Prediction and Learning. Machine Vision and Applications 28, 859–874 (2017). https://doi.org/10.1007/s00138-017-0872-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0872-0

Keywords

Navigation