Skip to main content
Log in

Image-based mesh generation of tubular geometries under circular motion in refractive environments

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents an image-based method aimed at generating a mesh of high-order finite elements on a tubular structure. The method assumes that the object is immersed in a liquid with known refractive coefficients and the images are recorded by moving the camera on a circular path around the object. Both the refractive effects and the camera motion are taken into account by a modified bundle adjustment formulation, which allows for an accurate reconstruction even in the presence of the optical interface. A parametric surface is fitted onto the resulting point cloud by an iterative surface fitting algorithm. Finally, the resulting surface is discretized into a mesh of high-order hexahedral elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Zhang, Y.J.: Image-Based Geometric Modeling and Mesh Generation, vol. 3. Springer, New York (2012)

    Google Scholar 

  2. Jordt-Sedlazeck, A., Koch, R.: Refractive structure-from-motion on underwater images. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 57–64. IEEE (2013)

  3. Chen, X., Yang, Y.-H.: Two-view camera housing parameters calibration for multi-layer flat refractive interface. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 524–531 (2014)

  4. Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3D shape by light-path triangulation. Int. J. Comput. Vis. 76(1), 13–29 (2008)

    Article  Google Scholar 

  5. Qian, Y., Gong, M., Yang, Y.-H.: Stereo-based 3D reconstruction of dynamic fluid surfaces by global optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1269–1278 (2017)

  6. Szabó, B.A., Düster, A., Rank, E.: The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics, chapter 5, vol. 1, pp. 119–139. Wiley (2004)

  7. Wong, K.H., Chang, M.M.-Y.: 3D model reconstruction by constrained bundle adjustment. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 902–905. IEEE (2004)

  8. Mulsow, C.: A flexible multi-media bundle approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38, 472–477 (2010)

    Google Scholar 

  9. Belden, J.: Calibration of multi-camera systems with refractive interfaces. Exp. Fluids 54(2), 1463 (2013)

    Article  Google Scholar 

  10. Pottmann, H., Leopoldseder, S.: A concept for parametric surface fitting which avoids the parametrization problem. Comput. Aided Geom. Des. 20(6), 343–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sorger, C., Frischmann, F., Kollmannsberger, S., Rank, E.: Tum. geoframe: automated high-order hexahedral mesh generation for shell-like structures. Eng. Comput. 30(1), 41–56 (2014)

    Article  Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

  13. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: International workshop on vision algorithms, pp. 298–372. Springer (1999)

  14. Glassner, A.S. (ed.): An Introduction to Ray Tracing. Academic Press Ltd., London (1989)

    MATH  Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Moulon, P., Monasse, P., Marlet, R., et al.: Openmvg: an open multiple view geometry library. https://github.com/openMVG/openMVG

  17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom. Des. 22(2), 121–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pottmann, H., Hofer, M.: Geometry of the squared distance function to curves and surfaces. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 221–242. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools 2236121 (2000)

  21. Yossef, O.E.: Experimental investigation of arteries’ mechanical properties: compressibility, passive and active responses. Master’s thesis, Department of Mechanical Engineering, Ben-Gurion University, Israel (2017)

  22. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  23. Jiang, G., Tsui, H.-T., Quan, L., Zisserman, A.: Single axis geometry by fitting conics. In: European Conference on Computer Vision, pp. 537–550. Springer (2002)

  24. Kumar, P., Miklavcic, S.J.: Integrated self-calibration of single axis motion for three-dimensional reconstruction of roots. IET Comput. Vis. 9(6), 850–856 (2015)

    Article  Google Scholar 

  25. Ke, X., Sutton, M.A., Lessner, S.M., Yost, M.: Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects. J. Strain Anal. Eng. Des. 43(8), 689–704 (2008)

    Article  Google Scholar 

  26. Yamashita, A., Hayashimoto, E., Kaneko, T., Kawata, Y.: 3-D measurement of objects in a cylindrical glass water tank with a laser range finder. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003, vol. 2, pp. 1578–1583. IEEE (2003)

Download references

Acknowledgements

The authors thank Mr. Avihai Uzan (Department of Mechanical Engineering, Ben Gurion University, Israel) for his assistance with the experiment in Sect. 3.3. The research was funded by the German-Israeli Foundation for Scientific Research and Development under Grant No. GIF-1189-89.2/2012. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kudela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudela, L., Frischmann, F., Yossef, O.E. et al. Image-based mesh generation of tubular geometries under circular motion in refractive environments. Machine Vision and Applications 29, 719–733 (2018). https://doi.org/10.1007/s00138-018-0921-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0921-3

Keywords

Navigation