Skip to main content
Log in

A multi-seed dynamic local graph matching model for tracking of densely packed cells across unregistered microscopy image sequences

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The tracking of plant cells in large-scale microscopy image sequences is very challenging, because plant cells are densely packed in a specific honeycomb structure, and the microscopy images can be randomly translated, rotated and scaled in the imaging process. This paper proposes a multi-seed dynamic local graph matching method to track the plant cells across unregistered microscopy image sequences, by exploiting the geometric structure and topology of cells’ relative positions as contextual information. The proposed dynamic cell matching scheme always selects the most similar cell pair in the dynamically growing neighbor set of matched cells, so it tends to prevent the matching error accumulation during the cell correspondence growing process. Furthermore, the multi-seed-based majority voting scheme can automatically rectify the matching errors produced by one seed only. Last, the cells’ lineage tracklets are associated by using the cells’ spatial–temporal context to obtain long-term trajectories. Compared with the existing local graph matching method, the experimental results show that the proposed method improves the tracking accuracy rate by about 30% in the unregistered image sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Magnusson, K.E.G., Jaldén, J., Gilbert, J.P.M., Blau, H.M.: Global linking of cell tracks using the Viterbi algorithm. IEEE Trans. Med. Imaging 34(4), 911–929 (2015)

    Article  Google Scholar 

  2. Chen, L., Zhao, Z., Yan, H.: A probabilistic relaxation labeling (PRL) based method for C. elegans cell tracking in microscopic image sequences. IEEE J. Select. Top. Signal Process. 10(1), 185–192 (2016)

    Article  Google Scholar 

  3. Liu, A.A., Li, K., Kanade, T.: A semi-Markov model for mitosis segmentation in time-lapse phase contrast microscopy image sequences of stem cell populations. Trans. Med. Imaging 31(2), 359–369 (2012)

    Article  Google Scholar 

  4. Yin, Z., Kanade, T., Chen, M.: Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 16(5), 1047–1062 (2012)

    Article  Google Scholar 

  5. Zou, R.S., Tomasi, C.: Deformable graph model for tracking epithelial cell sheets in fluorescence microscopy. IEEE Trans. Med. Imaging 35(7), 1625–1635 (2016)

    Article  Google Scholar 

  6. Amat, F., et al.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951–958 (2014)

    Article  Google Scholar 

  7. Santella, A., Du, Z., Bao, Z.: A semi-local neighborhood-based framework for probabilistic cell lineage tracing. BMC Bioinf. 15(1), 217 (2014)

    Article  Google Scholar 

  8. Dzyubachyk, O., Van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.: Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)

    Article  Google Scholar 

  9. Li, K., Miller, E.D., Chen, M., Kanade, T., Weiss, L.E., Campbell, P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12(5), 546–566 (2008)

    Article  Google Scholar 

  10. Padfield, D., Rittscher, J., Thomas, N., Roysam, B.: Spatio-temporal cell cycle phase analysis using level sets and fast marching methods. Med. Image Anal. 13(1), 143–155 (2009)

    Article  Google Scholar 

  11. Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.L., Malandain, G., Godin, C.: Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7(7), 547–553 (2010)

    Article  Google Scholar 

  12. Liu, M., Wei, Y., Qian, W., Zhang, H.: Robust plant tracking in noisy image sequences using optimal CRF graph matching. IEEE Signal Process. Lett. 24(8), 1168–1172 (2017)

    Article  Google Scholar 

  13. Ankerst, M., Kastenmüller, G., Kriegel, H.P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In the 6th International Symposium on Advances in Spatial Databases, pp. 207–226 (1999)

    Chapter  Google Scholar 

  14. Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In the 18th International Conference on Machine Learning (ICML), pp. 282–289 (2001)

  15. Liu, M., Chakraborty, A., Singh, D., Yadav, R.K., Meenakshisundaram, G., Reddy, G.V., Roy-Chowdhury, A.: Adaptive cell segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Mol. Plant 4(5), 922–931 (2011)

    Article  Google Scholar 

  16. Liu, A., Tang, J., Nie, W., Su, Y.: Multi-grained random fields for mitosis identification in tim-lapse phase contrast microscopy image sequences. IEEE Trans. Med. Imaging 36(8), 1699–1710 (2017)

    Article  Google Scholar 

  17. Sakai, Y., Oda, T., Ikeda, M., Barolli, L.: An object tracking system based on sift and surf feature extraction methods. In: Network-Based Information Systems (NBiS), 18th International Conference on IEEE, pp. 561–565 (2015)

  18. Mualla, F., Schöll, S., Sommerfeldt, B., Maier, A., Hornegger, J.: Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Trans. Med. Imaging 32(12), 2274–2286 (2013)

    Article  Google Scholar 

  19. Liu, M., Xiang, P., Liu, G.: Robust plant cell tracking using local spatio-temporal context. Neurocomputing 208, 309–314 (2016)

    Article  Google Scholar 

  20. Song, B., Jeng, T.Y., Staudt, E., Roy-Chowdhury, A.: A stochastic graph evolution framework for robust multi-target tracking. In: European Conference on Computer Vision, pp. 605–619 (2010)

    Chapter  Google Scholar 

  21. Yu, Q., Medioni, G., Cohen, I.: Multiple target tracking using spatio-temporal Markov Chain Monte Carlo data association. In: Computer Vision and Pattern Recognition, pp. 1–8 (2007)

  22. Liu, M., Yadav, R.K., Roy-Chowdhury, A., Reddy, G.V.: Automated tracking of stelineages of arabidopsis shoot apex using local graph matching. Plant J. 62(1), 135–147 (2010)

    Article  Google Scholar 

  23. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (1998)

    Article  MathSciNet  Google Scholar 

  24. Liu, M., Gong, R., Chen, W., Peng, H.: 3D neuron tip detection in volumetric microscopy images using an adaptive ray-shooting model. Pattern Recogn. 75, 263–271 (2018)

    Article  Google Scholar 

  25. Lu, J., Wang, G., Moulin, P.: Localized multifeature metric learning for image-set-based face recognition. IEEE Trans. Circuits Syst. Video Technol. 26(3), 529–540 (2016)

    Article  Google Scholar 

  26. Zhao, Z., Kumar, M.: An MCMC-based particle filter for multiple target tracking. In: Information Fusion (FUSION), 15th International Conference on IEEE, pp. 1676–1682 (2012)

  27. Daniyan, A.: Performance analysis of sequential Monte Carlo MCMC and PHD Filters on multi-target tracking in video. In: Modelling Symposium (EMS), pp. 195–202 (2014)

  28. Liu, M., He, Y., Wei, Y., Xiang, P.: Plant cell tracking using Kalman filter based local graph matching. Image Vis. Comput. 60, 154–161 (2017)

    Article  Google Scholar 

  29. Lu, J., Zhou, X., Tan, Y.P., Shang, Y., Zhou, J.: Neighborhood repulsed metric learning for kinship verification. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 331–345 (2014)

    Article  Google Scholar 

  30. Park, C., Huang, J.Z., Ji, J.X., Ding, Y.: Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 669–681 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Amit Roy- Chowdhury from the Department of Electrical Engineering at the University of California, Riverside, for offering insightful suggestions on building the proposed plant cell tracking framework. We gratefully acknowledge Prof. Venugopala Reddy from the Department of Botany and Plant Sciences at the University of California, Riverside, for providing us the datasets on which results are shown. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61771189 61301254 and 61471167) and Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing (No.2018007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, J. & Qian, W. A multi-seed dynamic local graph matching model for tracking of densely packed cells across unregistered microscopy image sequences. Machine Vision and Applications 29, 1237–1247 (2018). https://doi.org/10.1007/s00138-018-0937-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0937-8

Keywords

Navigation