Skip to main content
Log in

Detection and pose estimation of auto-rickshaws from traffic images

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In intelligent transport systems, detection and identification of vehicle types enact a substantial role. In this context, this paper addresses the detection and pose classification of a specific vehicle type: auto-rickshaws which have been heavily neglected by the publicly available vehicle datasets, but remains the most commonly used and cheap form of transportation in south Asian countries. Here, we introduce a dataset for auto-rickshaws which consists of instances of varying shape, orientation, size, scale, colour, viewpoint and many more. Further, we carry out a detailed analysis on the performance of state-of-the-art detection algorithms based on both hand-designed and deep features on the proposed dataset. The introduction of pose classification along with the detection eventually results in better understanding of road scenes involving auto-rickshaws. As a matter of fact, we came up with revisions for the currently employed detection algorithms to achieve a low miss rate on the validation sets. It is evident that the findings of this study are tangible and enormously consequential to the road scene understanding and intelligent transportation of developing countries where auto-rickshaws play a pivotal role in public transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. https://github.com/BastianBlossom/Detection-and-Pose-estimation-of-Auto-rickshaws.

References

  1. Bai, S., Liu, Z., Yao, C.: Classify vehicles in traffic scene images with deformable part-based models. Mach. Vis. Appl. 29(3), 393–403 (2018)

    Article  Google Scholar 

  2. Benenson, R., Mathias, M., Tuytelaars, T., Van Gool, L.: Seeking the strongest rigid detector. In: CVPR (2013)

  3. Betke, M., Haritaoglu, E., Davis, L.S.: Real-time multiple vehicle detection and tracking from a moving vehicle. Mach. Vis. Appl. 12(2), 69–83 (2000)

    Article  Google Scholar 

  4. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: European Conference on Computer Vision, pp. 354–370. Springer, Berlin (2016)

  5. Chen, D.Y., Lin, Y.H., Peng, Y.J.: Nighttime brake-light detection by Nakagami imaging. IEEE Trans. Intell. Transp. Syst. 13(4), 1627–1637 (2012)

    Article  Google Scholar 

  6. Chen, L., Zhang, Z., Peng, L.: Fast single shot multibox detector and its application on vehicle counting system. IET Intell. Transp. Syst. 12(10), 1406–1413 (2018)

    Article  Google Scholar 

  7. Cheon, M., Lee, W., Yoon, C., Park, M.: Vision-based vehicle detection system with consideration of the detecting location. IEEE Trans. Intell. Transp. Syst. 13(3), 1243–1252 (2012)

    Article  Google Scholar 

  8. Chu, W., Liu, Y., Shen, C., Cai, D., Hua, X.S.: Multi-task vehicle detection with region-of-interest voting. IEEE Trans. Image Process. 27(1), 432–441 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. CVIT, I.: Auto-Rickshaw Detection Challenge. http://cvit.iiit.ac.in/autorickshaw_detection/ (2017)

  10. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

  12. Deng, J., Dong, W., Socher, R., jia Li, L., Li, K., Fei-fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

  13. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  14. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral Channel Features (2009)

  15. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  16. Espinosa, J.E., Velastin, S.A., Branch, J.W.: Motorcycle Detection and Classification in Urban Scenarios Using a Model Based on Faster r-CNN (2018)

  17. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  18. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008 (CVPR 2008), pp. 1–8. IEEE (2008)

  19. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

  20. Girshick, R.: Fast R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2015)

  21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  22. Haselhoff, A., Kummert, A.: A vehicle detection system based on Haar and triangle features. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 261–266. IEEE (2009)

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  24. Hu, Q., Paisitkriangkrai, S., Shen, C., van den Hengel, A., Porikli, F.: Fast detection of multiple objects in traffic scenes with a common detection framework. IEEE Trans. Intell. Transp. Syst. 17(4), 1002–1014 (2016)

    Article  Google Scholar 

  25. Hwang, S., Kim, N., Choi, Y., Lee, S., Kweon, I.S.: Fast multiple objects detection and tracking fusing color camera and 3D Lidar for intelligent vehicles. In: 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 234–239. IEEE (2016)

  26. Jiang, Y., Ma, J.: Combination features and models for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12-June, pp. 240–248 (2015). https://doi.org/10.1109/CVPR.2015.7298620

  27. Khairdoost, N., Monadjemi, S.A., Jamshidi, K.: Front and rear vehicle detection using hypothesis generation and verification. Signal Image Process. 4(4), 31 (2013)

    Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  29. Liang, J., Chen, X., He, M.L., Chen, L., Cai, T., Zhu, N.: Car detection and classification using cascade model. IET Intell. Transp. Syst. 12(10), 1201–1209 (2018)

    Article  Google Scholar 

  30. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, vol. 1, p. 4 (2017)

  31. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. arXiv preprint arXiv:1708.02002 (2017)

  32. Lin, T.Y., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

  33. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  34. Mani, A., Pai, M., Aggarwal, R.A.: Sustainable Urban Transport in India Role of the Auto-Rickshaw Sector (2012)

  35. Mu, K., Hui, F., Zhao, X., Prehofer, C.: Multiscale edge fusion for vehicle detection based on difference of Gaussian. Optik Int. J. Light Electron Opt. 127(11), 4794–4798 (2016)

    Article  Google Scholar 

  36. Nam, W., Dollár, P., Han, J.H.: Local decorrelation for improved pedestrian detection. In: Advances in Neural Information Processing Systems, pp. 424–432 (2014)

  37. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS) (2015)

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2014)

  40. Sivaraman, S., Trivedi, M.M.: A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans. Intell. Transp. Syst. 11(2), 267–276 (2010)

    Article  Google Scholar 

  41. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25(3), 599–611 (2014)

    Article  Google Scholar 

  42. Teoh, S.S., Bräunl, T.: Symmetry-based monocular vehicle detection system. Mach. Vis. Appl. 23(5), 831–842 (2012)

    Article  Google Scholar 

  43. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  44. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001 (CVPR 2001), vol. 1, pp. I–I. IEEE (2001)

  45. Wada, K.: Image polygonal annotation with python. https://github.com/wkentaro/labelme

  46. Wen, X., Shao, L., Fang, W., Xue, Y.: Efficient feature selection and classification for vehicle detection. IEEE Trans. Circuits Syst. Video Technol. 25(3), 508–517 (2015)

    Article  Google Scholar 

  47. Zhang, F., Clarke, D., Knoll, A.: Vehicle detection based on Lidar and camera fusion. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1620–1625. IEEE (2014)

  48. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? arXiv preprint arXiv:1607.07032 (2016)

  49. Zhang, S., Bauckhage, C., Cremers, A.B.: Informed Haar-like features improve pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2014)

  50. Zhou, Y., Liu, L., Shao, L., Mellor, M.: Fast automatic vehicle annotation for urban traffic surveillance. IEEE Trans. Intell. Transp. Syst. 19(6), 1973–1984 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blossom Treesa Bastian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastian, B.T., Charangatt Victor, J. Detection and pose estimation of auto-rickshaws from traffic images. Machine Vision and Applications 31, 54 (2020). https://doi.org/10.1007/s00138-020-01106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01106-0

Keywords

Navigation