Skip to main content
Log in

Brain–computer interfaces and dualism: a problem of brain, mind, and body

  • Original Article
  • Published:
AI & SOCIETY Aims and scope Submit manuscript

Abstract

The brain–computer interface (BCI) has made remarkable progress in the bridging the divide between the brain and the external environment to assist persons with severe disabilities caused by brain impairments. There is also continuing philosophical interest in BCIs which emerges from thoughtful reflection on computers, machines, and artificial intelligence. This article seeks to apply BCI perspectives to examine, challenge, and work towards a possible resolution to a persistent problem in the mind–body relationship, namely dualism. The original humanitarian goals of BCIs and the technological inventiveness result in BCIs being surprisingly useful. We begin from the neurologically impaired person, the problems encountered, and some pioneering responses from computers and machines. Secondly, the interface of mind and brain is explored via two points of clarification: direct and indirect BCIs, and the nature of thoughts. Thirdly, dualism is beset by mind–body interaction difficulties and is further questioned by the phenomena of intentions, interactions, and technology. Fourthly, animal minds and robots are explored in BCI settings again with relevance for dualism. After a brief look at other BCIs, we conclude by outlining a future BCI philosophy of brain and mind, which might appear ominous and could be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If the neural signals proceed to a machine such as a robot and not to a computer, the term BMI was used (Donoghue 2008). The terms are nowadays interchangeable. Other terms are neural interface systems (Hatsopoulos and Donoghue 2009), and neuroprosthetics which uses neural interface systems to control robotic limbs to perform three-dimensional movements (Hochberg et al. 2012; Kwok 2013). All BCI systems require some type of training: learned voluntary control or cognitive voluntary modulation (Birbaumer and Cohen 2007). In this article, we use BCI for convenience.

  2. The anonymous author anticipates the question: “So why am I writing this piece anonymously? Because I don't want to be known to the scientific community as 'Parkinson's guy' before I am known as a scientist” (p.30). The article notes that the author is a neuroscience professor at a major university in the USA and that he blogs at parklifensci.blogspot.com and tweets at @Parklifensci. e-mail: parklifensci@gmail.com.

  3. These interesting comparative titles were suggested by an anonymous reviewer, who likens the situation to “being in the mind of someone” and “trying to infer what is happening in the mind”. We return to this in the conclusions.

  4. The existence of a range of applications and indeed status between BCI being a “‘means” and a “machine subject” was highlighted by an anonymous reviewer together with a helpful suggestion.

References

  • Abramson D (2011) Philosophy of mind is (in part) philosophy of computer science. Minds Mach 21:203–219

    Article  Google Scholar 

  • Al-Hudhud G et al (2014) Using brain signals patterns for biometric identity verification systems. Comput Hum Behav 31:224–229

    Article  Google Scholar 

  • Allison BZ et al (2012) Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J Neural Eng 9. doi:10.1088/1741-2560/9/1/013001

  • Andersen RA et al (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190

    Article  Google Scholar 

  • Anonymous (2013) My life with Parkinson’s. Nature 503:29–30

    Article  Google Scholar 

  • Aranyosi I (2011) A new argument for mind–brain identity. Br J Philos Sci 62:489–517

    Article  Google Scholar 

  • Baldwin DA, Baird JA (2001) Discerning intentions in dynamic human action. Trends Cogn Sci 5:171–178

    Article  Google Scholar 

  • Barrett JA (2006) A quantum-mechanical argument for mind–body dualism. Erkenntnis 65:97–115

    Article  Google Scholar 

  • Beauregard M (2007) Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol 81:218–236

    Article  Google Scholar 

  • Bekey GA (2005) Autonomous robots, from biological inspiration to implementation and control. MIT Press, Cambridge

    Google Scholar 

  • Belda-Lois J-M et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEng Rehabil 8. doi:10.1186/1743-0003-8-66

  • Bell CJ et al (2008) Control of a humanoid robot by a noninvasive brain–computer interface in humans. J Neural Eng 5:214–220

    Article  Google Scholar 

  • Bickle J (2001) Understanding neural complexity: a role for reduction. Minds Mach 11:467–481

    Article  Google Scholar 

  • Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532

    Article  Google Scholar 

  • Birbaumer N, Cohen LG (2007) Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636

    Article  Google Scholar 

  • BonJour L (2010) Against materialism. In: Koons RC, Bealer G (eds) The waning of materialism. Oxford University Press, Oxford, pp 3–23

    Chapter  Google Scholar 

  • Bonnet L, Lotte F, Lécuyer A (2013) Two brains, one game: design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans Comput Intell AI Games 5:185–198

    Article  Google Scholar 

  • Brack A, Troublé M (2010) Defining life: connecting robotics and chemistry. Orig Life Evol Biosph 40:131–136

    Article  Google Scholar 

  • Brumberg JS, Guenther FH (2010) Development of speech prostheses: current status and recent advances. Expert Rev Med Devices 7:667–679

    Article  Google Scholar 

  • Brumberg JS et al (2010) Brain–computer interfaces for speech communication. Speech Commun 52:367–379

    Article  Google Scholar 

  • Brunner P et al (2011) Current trends in hardware and software for brain–computer interfaces (BCIs). J Neural Eng 8. doi:10.1088/1741-2560/8/2/025001

  • Campbell CM, Edwards RR (2009) Mind–body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts. Transl Res 153:97–101

    Article  Google Scholar 

  • Campbell M, Hoane J Jr, Hsu H-f (2002) Deep blue. AI 134:57–83

    MATH  Google Scholar 

  • Chai R et al (2012) Mental non-motor imagery tasks classifications of brain computer interface for wheelchair commands using genetic algorithm-based neural network. Proc2012 Int Joint Conf Neural Netw, 10–15 June 2012, doi:10.1109/IJCNN.2012.6252499

  • Chapin JK et al (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    Article  Google Scholar 

  • Churchland PM (1981) Eliminative materialism and the propositional attitudes. J Philos 78:67–90

    Google Scholar 

  • Coeckelbergh M (2011) You, robot: on the linguistic construction of artificial others. AI Soc 26:61–69

    Article  Google Scholar 

  • de Kamps M (2012) Towards truly human-level intelligence in artificial applications. Cogn Syst Res 14:1–9

    Article  MathSciNet  Google Scholar 

  • De Massari D et al (2013) Brain communication in the locked-in state. Brain 136:1989–2000

    Article  Google Scholar 

  • DiGiovanna J et al (2009) Brain–machine interface via reinforcement learning. IEEE Trans Biomed Eng 56:54–64

    Article  Google Scholar 

  • Donoghue JP (2008) Bridging the brain to the world: a perspective on neural interface systems. Neuron 60:511–521

    Article  Google Scholar 

  • Ducao A, Tseng T, von Kapri A (2012) Transparent: brain computer interface and social architecture. Proc SIGGRAPH’12 ACM SIGGRAPH 2012 Posters. doi:10.1145/2342896.2342929

  • Dumit J (2004) Picturing personhood: brain scans and biomedical identity. Princeton University Press, Princeton

    Google Scholar 

  • Durkin J (2003) Man and machine: I wonder if we can coexist. AI Soc 17:383–390

    Article  Google Scholar 

  • Edelman GM (1992) Bright air, brilliant fire: on the matter of the mind. Basic Books, New York

    Google Scholar 

  • Ekandem JI et al (2012) Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 55:592–598

    Article  Google Scholar 

  • Engel AK et al (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6:35–47

    Article  Google Scholar 

  • Evers K, Sigman M (2013) Possibilities and limits of mind-reading: a neurophilosophical perspective. Conscious Cogn 22:887–897

    Article  Google Scholar 

  • Fan JM et al (2014) Intention estimation in brain–machine interfaces. J Neural Eng. doi:10.1088/1741-2560/11/1/016004

    Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  • Fernandez-Vargas J (2013) Assisted closed-loop optimization of SSVEP-BCI efficiency. Front Neural Circuits 7:27. doi:10.3389/fncir.2013.00027

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space–time. Phys Life Rev 7:195–249

    Article  Google Scholar 

  • Flanagan O (2005) History of the philosophy of mind. In: Honderich T (ed) The Oxford companion to philosophy, new edn. Oxford University Press, Oxford, pp 603–607

    Google Scholar 

  • Frisoli A et al (2012) A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst Man Cybern C Appl Rev 42:1169–1179

    Article  Google Scholar 

  • Gergondet P et al (2011) Using brain–computer interface to steer a humanoid robot. Proc 2011 IEEE Int Conf Robotics Biomim (ROBIO) 192–197

  • Glannon W (2009) Our brains are not us. Bioethics 23:321–329

    Article  Google Scholar 

  • Gollwitzer PM (1993) Goal achievement: the role of intentions. Euro Rev Soc Psychol 4:141–185

    Article  Google Scholar 

  • Gomez-Rodriguez M et al (2011) Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng 8. doi:10.1088/1741-2560/8/3/036005

  • Green AM, Kalaska JF (2011) Learning to move machines with the mind. Trends Neurosci 34:61–75

    Article  Google Scholar 

  • Grübler G (2011) Beyond the responsibility gap. Discussion note on responsibility and liability in the use of brain–computer interfaces. AI Soc 26:377–382

    Article  Google Scholar 

  • Gürkök H, Nijholt A (2012) Brain–computer interfaces for multimodal interaction: a survey and principles. Int J Hum Comput Interact 28:292–307

    Article  Google Scholar 

  • Gürkök H et al (2013) Evaluating a multi-player brain–computer interface game: challenge versus co-experience. Entertain Comput 4:195–203

    Article  Google Scholar 

  • Haig AJ, Katz RT, Sahgal V (1987) Mortality and complications of the locked-in syndrome. Arch Phys Med Rehabil 68:24–27

    Google Scholar 

  • Hainline B (2011) Neuropathic pain: mind–body considerations. Neurol Clin 29:19–33

    Article  Google Scholar 

  • Harnad S, Scherzer P (2008) First, scale up to the robotic Turing test, then worry about feeling. AI Med 44:83–89

    Google Scholar 

  • Hasan BAS, Gan JO (2012) Hangman BCI: an unsupervised adaptive self-paced brain–computer interface for playing games. Comput Biol Med 42:598–606

    Article  Google Scholar 

  • Haselager P (2013) Did I do that? Brain–computer interfacing and the sense of agency. Minds Mach 23:405–418

    Article  Google Scholar 

  • Hatfield G (2000) The brain’s ‘new’ science: psychology, neurophysiology, and constraint. Philos Sci 67:S388–S403

    Article  Google Scholar 

  • Hatsopoulos HG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266

    Article  Google Scholar 

  • Hirata M et al (2012) Motor restoration based on the brain–machine interface using brain surface electrodes: real-time robot control and a fully implantable wireless system. Adv Robot 26:399–408

    Article  Google Scholar 

  • Hochberg LR et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  Google Scholar 

  • Hustvedt S (2013) Philosophy matters in brain matters. Seizure 22:169–173

    Article  Google Scholar 

  • Iáñez E et al (2010) Mental tasks-based brain–robot interface. Robot Auton Syst 58:1238–1245

    Article  Google Scholar 

  • Kaitaro T (2004) Brain–mind identities in dualism and materialism: a historical perspective. Stud Hist Philos Biol Biomed Sci 35:627–645

    Article  Google Scholar 

  • Kelley R et al (2014) Intent recognition for human–robot interaction. In: Sukthankar G et al (eds) Plan, activity, and intent recognition: theory and practice. Morgan Kaufmann, Waltham, pp 343–365

    Chapter  Google Scholar 

  • Kendler KS, Campbell J (2009) Interventionist causal models in psychiatry: repositioning the mind–body problem. Psychol Med 39:881–887

    Article  Google Scholar 

  • Kihlstrom JH (2008) Placebo: feeling better, getting better, and the problems of mind and body. McGill J Med 11:212–213

    Google Scholar 

  • Kim J (1998) The mind–body problem after fifty years. In: O’Hear A (ed) Current issues in the philosophy of mind. Cambridge University Press, Cambridge, pp 3–21

    Chapter  Google Scholar 

  • Kim H-Y (2008) Locke and the mind–body problem: an interpretation of his agnosticism. Philoshy 83:439–458

    Article  Google Scholar 

  • Krepki R et al (2007) The Berlin brain–computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33:73–90

    Article  Google Scholar 

  • Kron SS (2012) The mind body problem. Anesthesiology 116:219–221

    Article  Google Scholar 

  • Kübler A et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124:223–232

    Article  Google Scholar 

  • Kwok R (2013) Neuroprosthetics: once more, with feeling. Nature 497:176–178

    Article  Google Scholar 

  • Kyselo M (2013) Locked-in syndrome and BCI—towards an enactive approach to the self. Neuroethics 6:579–591

    Article  Google Scholar 

  • Laureys S et al (2005) The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res 150:495–511

    Article  Google Scholar 

  • Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. Trends Neurosci 29:536–546

    Article  Google Scholar 

  • Lee B, Liu CY, Apuzzo MLJ (2013) A primer on brain–machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 79:457–471

    Article  Google Scholar 

  • Lin C-T et al (2010) Review of wireless and wearable electroencephalogram systems and brain–computer interfaces—a mini-review. Gerontology 56:112–119

    Article  Google Scholar 

  • Lopes DM (2010) A philosophy of computer art. Routledge, Oxford

    Google Scholar 

  • Lucivero F, Tamburrini G (2008) Ethical monitoring of brain–machine interfaces. AI Soc 22:449–460

    Article  Google Scholar 

  • Lulé D et al (2009) Life can be worth living in locked-in syndrome. Prog Brain Res 177:339–351

    Article  Google Scholar 

  • Lulé D et al (2013) Probing command following in patients with disorders of consciousness using a brain–computer interface. Clin Neurophysiol 124:101–106

    Article  Google Scholar 

  • Lycan WG (2009) Giving dualism its due. Australas J Philos 87:551–563

    Article  Google Scholar 

  • MacDorman KF, Ishiguro H (2006) The uncanny advantage of using androids in cognitive and social science research. Interact Stud 7:297–337

    Article  Google Scholar 

  • Marshall PJ (2009) Relating psychology and neuroscience: taking up the challenges. Perspect Psychol Sci 4:113–125

    Article  Google Scholar 

  • Mazzone M (2011) Intentions as complex entities. Rev Philos Psychol 2:767–783

    Article  Google Scholar 

  • McFarland D (2008) Guilty robots, happy dogs: the question of alien minds. Oxford University Press, Oxford

    Google Scholar 

  • McGinn C (1989) Can we solve the mind–body problem? Mind 98:349–366

    Article  Google Scholar 

  • Molyneux B (2012) How the problem of consciousness could emerge in robots. Minds Mach 22:277–297

    Article  Google Scholar 

  • Morris K (2004) Mind moves onscreen: brain–computer interface comes to trial. Lancet Neurol 3:329

    Article  Google Scholar 

  • Murguialday R et al (2011) Transition from the locked into the completely locked-in state: a physiological analysis. Clin Neurophysiol 122:925–933

    Article  Google Scholar 

  • Nagasawa Y (2012) Infinite decomposability and the mind–body problem. Am Philos Q 49:357–367

    Google Scholar 

  • Nagel T (1974) What is it like to be a bat? Philos Rev 83:435–450

    Article  Google Scholar 

  • Nakahara K, Miyashita Y (2005) Understanding intentions: through the looking glass. Science 308:644–645

    Article  Google Scholar 

  • Narayanan A (2013) Society under threat… but not from AI. AI Soc 28:87–94

    Article  Google Scholar 

  • Niazi IK et al (2012) Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans Neural Syst Rehabil Eng 20:595–604

    Article  Google Scholar 

  • Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279

    Article  Google Scholar 

  • Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature Rev Neurosci 10:530–540

    Article  Google Scholar 

  • Ortner R et al (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19:1–5

    Article  Google Scholar 

  • Papies EK et al (2009) Planning is for doing: implementation intentions go beyond the mere creation of goal-directed associations. J Exp Soc Psychol 45:1148–1151

    Article  Google Scholar 

  • Pearson Y, Borenstein J (2013) The intervention of robot caregivers and the cultivation of children’s capability to play. Sci Eng Ethics 19:123–137

    Article  Google Scholar 

  • Pérez-Marcos D, Buitrago JA, Velásquez FDG (2011) Writing through a robot: a proof of concept for a brain–machine interface. Med Eng Phys 33:1314–1317

    Article  Google Scholar 

  • Pfurtscheller G et al (2003) ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36

    Article  Google Scholar 

  • Poel M et al (2012) Brain computer interfaces as intelligent sensors for enhancing human–computer interaction. In: Proceedings of 14th ACM international conference multimodal interact, 22–26 Oct 2012, Santa Monica, CA, 379–382

  • Pribram KH (1998) Thoughts on the meaning of brain electrical activity. Int J Psychol 33:213–225

    Article  Google Scholar 

  • Rockwell WT (2007) Neither brain nor ghost, a nondualist alternative to the mind–brain identity theory. The MIT Press, Cambridge

    Google Scholar 

  • Rocon E et al (2010) Multimodal BCI-mediated FES suppression of pathological tremor. 2010 Annu Int Conf IEEE Eng Med Biol Soc (EMBC), 3337–3340

  • Rohm M et al (2013) Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. AI Med 59:133–142

    Google Scholar 

  • Ropper AJ (2010) Cogito ergo sum by MRI. New Eng J Med 362:648–649

    Article  Google Scholar 

  • Rubinstein JT (2004) How cochlear implants encode speech. Curr Opin Otolaryngol Head Neck Surg 12:444–448

    Article  Google Scholar 

  • Sanchez JC et al (2009) Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants. Neural Netw 22:305–315

    Article  Google Scholar 

  • Sartenaer O (2013) Neither metaphysical dichotomy nor pure identity: clarifying the emergentist creed. Stud Hist Philos Biol Biomed Sci 44:365–373

    Article  Google Scholar 

  • Scherberger H (2009) Neural control of motor prostheses. Curr Opin Neurobiol 19:629–633

    Article  Google Scholar 

  • Scherer R, Pfurtscheller G (2013) Thought-based interaction with the physical world. Trends Cogn Sci 17:490–492

    Article  Google Scholar 

  • Scherer R et al (2013) Brain–computer interfacing: more than the sum of its parts. Soft Comput 17:317–331

    Article  Google Scholar 

  • Schimmel P (2001) Mind over matter? I: philosophical aspects of the mind–brain problem. Aust NZ J Psychiatry 35:481–487

    Article  Google Scholar 

  • Schneider S (2013) Non-reductive physicalism and the mind problem. Noûs 47:135–153

    Article  Google Scholar 

  • Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3:417–424

    Article  Google Scholar 

  • Searle JR (1984) Minds, brains and science, the 1984 Reith Lectures. Harvard University Press, Cambridge

    Google Scholar 

  • Searle JR (1992) The rediscovery of the mind. The MIT Press, Cambridge

    Google Scholar 

  • Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548

    Article  Google Scholar 

  • Smart JJC (1963) Materialism. J Philos 60:651–662

    Article  Google Scholar 

  • Solis J et al (2010) Development of the anthropomorphic saxophonist robot WAS-1: mechanical design of the simulated organs and implementation of air pressure feedback control. Adv Robot 24:629–650

    Article  Google Scholar 

  • Stoll J et al (2013) Pupil responses allow communication in locked-in syndrome patients. Curr Biol 23:R647–R648

    Article  Google Scholar 

  • Tan L-F et al (2014) Effect of mindfulness meditation on brain–computer interface performance. Conscious Cogn 23:12–21

    Article  Google Scholar 

  • Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Article  Google Scholar 

  • Taylor DM, Tillery SI, Schwartz AB (2003) Information conveyed through brain-control: cursor versus robot. IEEE Trans Neural Syst Rehabil Eng 11:195–199

    Article  Google Scholar 

  • Thinnes-Elker F et al (2012) Intention concepts and brain–machine interfacing. Front Psychol 3. doi:10.3389/fpsyg.2012.00455

  • Tretter F (2010) Philosophical aspects of neuropsychiatry. In: Tretter F et al (eds) Systems biology in psychiatric research: from high-throughput data to mathematical modelling. Wiley-Blackwell, Weinheim, pp 3–25

    Chapter  Google Scholar 

  • Uithol S et al (2014) Why we may not find intentions in the brain. Neuropsychologia 56:129–139

    Article  Google Scholar 

  • Ungar T, Knaak S (2013) The hidden medical logic of mental health stigma. Aust NZ J Psychiatry 47:611–612

    Article  Google Scholar 

  • Velliste M (2008) Cortical control of a prosthetic arm for self-feeding. Nature 53:1098–1101

    Article  Google Scholar 

  • Verbeek P-P (2008) Cyborg intentionality: rethinking the phenomenology of human–technology relations. Phenomenol Cognit Sci 7:387–395

    Article  Google Scholar 

  • Vidal F (2009) Brainhood, anthropological figure of modernity. Hist Hum Sci 22:5–36

    Article  Google Scholar 

  • Wasserman EA (1993) Comparative cognition: beginning the second century of the study of animal intelligence. Psychol Bull 113:211–228

    Article  Google Scholar 

  • Weisberg DS et al (2008) The seductive allure of neuroscience explanations. J Cogn Neurosci 20:470–477

    Article  Google Scholar 

  • Wellman HM et al (2009) Early intention understandings that are common to primates predict children’s later theory of mind. Curr Opin Neurobiol 19:57–62

    Article  Google Scholar 

  • Williams JJ et al (2013) Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI. J Neural Eng 10. doi:10.1088/1741-2560/10/4/046001

  • Wolpaw JR et al (2000) Brain–computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173

    Article  Google Scholar 

  • Wolpaw JR et al (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  • Yu T et al (2012) Surfing the internet with a BCI mouse. J Neural Eng 9. doi:10.1088/1741-2560/9/3/036012

  • Zhang Q et al (2011) Building brain machine interfaces: from rat to monkey. In: Proceedings of 2011 8th Asian Control Conference (ASCC) Kaohsiung, Taiwan, May 15–18, 2011, pp 886–891

  • Zhou J et al (2009) EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects. Comput Biol Med 39:443–452

    Article  Google Scholar 

  • Zickler CA et al (2013) Brain painting: usability testing according to the user-centered design in end users with severe motor paralysis. AI Med 59:99–110

    Google Scholar 

Download references

Acknowledgments

I would like to acknowledge the thoughtful comments, encouragement, and insightful suggestions of the two anonymous reviewers which assisted in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J. Brain–computer interfaces and dualism: a problem of brain, mind, and body. AI & Soc 31, 29–40 (2016). https://doi.org/10.1007/s00146-014-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00146-014-0545-8

Keywords

Navigation