Skip to main content
Log in

Branching in the \({\Sigma^0_2}\) -enumeration degrees: a new perspective

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We give an alternative and more informative proof that every incomplete \({\Sigma^{0}_{2}}\) -enumeration degree is the meet of two incomparable \({\Sigma^{0}_{2}}\) -degrees, which allows us to show the stronger result that for every incomplete \({\Sigma^{0}_{2}}\) -enumeration degree a, there exist enumeration degrees x 1 and x 2 such that a, x 1, x 2 are incomparable, and for all b  ≤  a, b  =  (bx 1 ) ∧ (bx 2 ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, S.: Some Results on the Structure of the Σ2 Enumeration Degrees. Ph.D. Thesis, Simon Fraser University (1989)

  2. Ahmad S.: Embedding the diamond in the Σ2enumeration degrees. J. Symbolic Log. 56(1), 195–212 (1991)

    Article  MATH  Google Scholar 

  3. Ahmad S., Lachlan A.H.: Some special pairs of Σ2 e-degrees. MLQ Math. Log. Q 44(4), 431–449 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arslanov, M.M., Barry Cooper, S., Kalimullin, I.S.: Splitting properties of total enumeration degrees. Algebra Log. 42(1), 3–25, 125 (2003)

  5. Barry Cooper S.: Partial degrees and the density problem. II. The enumeration degrees of the Σ2 sets are dense. J. Symbolic Log. 49(2), 503–513 (1984)

    Article  Google Scholar 

  6. Barry Cooper, S.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Recursion theory week (Oberwolfach, 1989). Lecture Notes in Math., vol. 1432, pp. 57–110. Springer, Berlin (1990)

  7. Barry Cooper S.: Computability Theory. Chapman & Hall/CRC, London/Boca Raton (2004)

    MATH  Google Scholar 

  8. Fejer P.A.: The density of the nonbranching degrees. Ann. Pure Appl. Log. 24(2), 113–130 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jockusch C.G. Jr: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc. 131, 420–436 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kent T.F., Sorbi A.: Bounding nonsplitting enumeration degrees. J. Symbolic Log. 72(4), 1405–1417 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lachlan A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc. Lond. Math. Soc. 16(3), 537–569 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lachlan A.H., Shore R.A.: The n-rea enumeration degrees are dense. Arch. Math. Log. 31(4), 277–285 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nies A., Sorbi A.: Branching in the enumeration degrees of the \({\Sigma^0_2}\) sets. Israel J. Math. 110, 29–59 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Slaman, T.A.: The density of infima in the recursively enumerable degrees. In: International Symposium on Mathematical Logic and its Applications (Nagoya, 1988). Ann. Pure Appl. Logic. 52(1-2):155–179 (1991)

  15. Soare, R.I.: Recursively enumerable sets and degrees. In: A study of computable functions and computably generated sets. Perspectives in Mathematical Logic. Springer, Berlin (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Kent.

Additional information

The first author would like to thank her advisor, Andrea Sorbi, whose guidance made this paper possible. The second author has been supported by a Marie Curie Incoming International Fellowship of the European Community FP6 Program under contract number MIFI-CT-2006-021702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affatato, M.L., Kent, T.F. & Sorbi, A. Branching in the \({\Sigma^0_2}\) -enumeration degrees: a new perspective. Arch. Math. Logic 47, 221–231 (2008). https://doi.org/10.1007/s00153-008-0081-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0081-7

Keywords

Mathematics Subject Classification (2000)

Navigation