Skip to main content
Log in

Relativized Schnorr tests with universal behavior

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A Schnorr test relative to some oracle A may informally be called “universal” if it covers all Schnorr tests. Since no true universal Schnorr test exists, such an A cannot be computable. We prove that the sets with this property are exactly those with high Turing degree. Our method is closely related to the proof of Terwijn and Zambella’s characterization of the oracles which are low for Schnorr tests. We also consider the oracles which compute relativized Schnorr tests with the weaker property of covering all computable reals. The degrees of these oracles strictly include the hyperimmune degrees and are strictly included in the degrees not computably traceable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoszyński T.: Additivity of measure implies additivity of category. Trans. Am. Math. Soc. 281, 225–239 (1987)

    Google Scholar 

  2. Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line. A K Peters, Wellesley (1995)

    MATH  Google Scholar 

  3. Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. I, Chap. 5. Springer, Berlin (to appear)

  4. Downey R.G., Griffiths E.J.: Schnorr randomness. J. Symb. Log. 69, 533–554 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey R.G., Merkle W., Reimann J.: Schnorr dimension. Math. Struct. Comp. Sci. 16(5), 789–811 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goldstern M., Judah H., Shelah S.: Strong measure zero sets without Cohen reals. J. Symb. Log. 58, 1323–1341 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jockusch, C.G. Jr., Soare, R.I.: \({\Pi_1^0}\) classes and degrees of theories. Trans. Am. Math. Soc. 33–56 (1972)

  8. Kautz, S.A.: Degrees of random sets. Ph.D thesis, Cornell University (1991)

  9. Kunen K.: Random and cohen reals. In: Kunen, K., Vaughan, J.E. (eds) Handbook of Set-Theoretic Topology, Chapter 20, pp. 887–911. Elsevier Science, Amsterdam (1983)

    Google Scholar 

  10. Kurtz, S.: Randomness and genericity in the degrees of unsolvability. Ph.D thesis, University of Illinois, Urbana (1981)

  11. Martin D.A.: Classes of recursively enumerable sets and degrees of unsolvability. Z. Math. Log. Grund. Math. 12, 295–310 (1966)

    Article  MATH  Google Scholar 

  12. Martin-Löf P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

    Article  Google Scholar 

  13. Miller A.: Additivity of measure implies dominating reals. Proc. Am. Math. Soc. 91, 111–117 (1984)

    Article  MATH  Google Scholar 

  14. Nies A., Stephan F., Terwijn S.A.: Randomness, relativization, and the turing degrees. J. Symb. Log. 70, 515–535 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pawlikowski J., Recław I.: Parametrized Cichoń’s diagram. Fund. Math. 147, 135–155 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Raisonnier J.: A mathematical proof of S. Shelah’s theorem on the measure problem and related results. Isr. J. Math. 48, 48–56 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rothberger F.: Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpińskischen Mengen. Fund. Math. 30, 215–217 (1938)

    Google Scholar 

  18. Schnorr C.-P.: Zufälligkeit und Wahrscheinlichkeit: Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)

    Google Scholar 

  19. Schnorr C.-P.: Process complexity and effective random tests. J. Comp. Syst. Sci. 7, 376–388 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stephan, F., Yu, L.: Lowness for weakly 1-generic and Kurtz random. In: Theory and Applications of Models of Computation, vol. 3959, pp. 756–764. Springer, Berlin (2006)

  21. Terwijn S.A., Zambella D.: Computational randomness and lowness. J. Symb. Log. 66, 1199–1205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. van Lambalgen M.: Von Mises’ notion of random sequence reconsidered. J. Symb. Log. 52, 725–755 (1987)

    Article  MATH  Google Scholar 

  23. Yu L.: Lowness for genericity. Arch. Math. Log. 45, 233–238 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Rupprecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupprecht, N. Relativized Schnorr tests with universal behavior. Arch. Math. Logic 49, 555–570 (2010). https://doi.org/10.1007/s00153-010-0187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0187-6

Keywords

Mathematics Subject Classification (2000)

Navigation