Skip to main content
Log in

Badness and jump inversion in the enumeration degrees

  • Original Study
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \({\Pi^{0}_{2}}\) set A whose enumeration degree a is bad—i.e. such that no set \({X \in a}\) is good approximable—and whose complement \({\overline{A}}\) has lowest possible jump, in other words is low2. This also ensures that the degrees ya only contain \({\Delta^{0}_{3}}\) sets and thus yields a tight lower bound for the complexity of both a set of bad enumeration degree, and of its complement, in terms of the high/low jump hierarchy. Extending the author’s previous characterisation of the double jump of good approximable sets, the triple jump of a \({\Sigma^{0}_{2}}\) set A is characterised in terms of the index set of coinfinite sets enumeration reducible to A. The paper concludes by using Griffith’s jump interpolation technique to show that there exists a high quasiminimal \({\Delta^{0}_{2}}\) enumeration degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arslanov M.M., Cooper S.B., Kalimullin I.S.: Splitting properties of total enumeration degrees. Algebra Log. 42(1), 1–13 (2003)

    Article  MathSciNet  Google Scholar 

  2. Arslanov M.M., Cooper S.B., Kalimullin I.S., Soskova M.I.: Splitting and nonsplitting in the \({\Sigma^{0}_{2}}\) enumeration degrees. Theor. Comput. Sci. 412(18), 1669–1685 (2011). doi:10.1016/j.tcs.2010.12.042

    Article  MathSciNet  MATH  Google Scholar 

  3. Cooper S.B., McEvoy K.: On minimal pairs of enumeration degrees. J. Symb. Log. 50(4), 983–1001 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, S.B.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies, K., Müller, G., Sacks, G.E. (eds.) Recursion Theory Week, Oberwolfach 1989, Lecture Notes in Mathematics, vol. 1432, pp. 57–110. Springer, Heidelberg (1989)

  5. Cooper S.B.: Computability Theory. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  6. Calhoun W.C., Slaman T.A.: The \({{\Pi^{0}_{2}}}\) enumeration degrees are not dense. J. Symb. Log. 61(4), 1364–1379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper S.B., Sorbi A., Yi X.: Cupping and noncupping in the enumeration degrees of \({\Sigma^{0}_{2}}\) sets. Ann. Pure Appl. Log. 82, 317–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedberg R.M., Rogers H.: Reducibilities and completeness for sets of integers. Zeit. Math. Log. Grund. Math. 5, 117–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griffith E.J.: Limit lemmas and jump inversion in the enumeration degrees. Arch. Math. Log. 42, 553–562 (2003)

    Article  Google Scholar 

  10. Harris C.M.: Goodness in the enumeration and singleton degrees. Arch. Math. Log. 49(6), 673–691 (2010)

    Article  MATH  Google Scholar 

  11. Harris, C.M.: Low2 Turing Bounds in the Local Enumeration Degrees. Unpublished Note (2010)

  12. Harris, C.M.: Noncuppable enumeration degrees via finite injury. J. Log. Comput. doi:10.1093/logcom/exq044 (2011)

  13. Harris C.M.: On the jump classes of noncuppable enumeration degrees. J. Symb. Log. 76(1), 177–197 (2011)

    Article  MATH  Google Scholar 

  14. Jockusch C.G.: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc. 131, 420–436 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lachlan H., Shore R.A.: The n-rea enumeration degrees are dense. Arch. Math. Log. 31, 277–285 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. McEvoy, K.: The Structure of the Enumeration Degrees. PhD thesis, The University of Leeds, UK (1984)

  17. Odifreddi P.G.: Classical Recursion Theory. Elsevier Science B.V., Amsterdam (1989)

    MATH  Google Scholar 

  18. Soare R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Google Scholar 

  19. Sorbi A.: The Enumeration Degrees of the \({\Sigma^{0}_{2}}\) Sets, pp. 303–330. Marcel Dekker, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Harris.

Additional information

Research supported by EPSRC research grant No. EP/G000212, Computing with Partial Information: Definability in the Local Structure of the Enumeration Degrees.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C.M. Badness and jump inversion in the enumeration degrees. Arch. Math. Logic 51, 373–406 (2012). https://doi.org/10.1007/s00153-012-0268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0268-9

Keywords

Mathematics Subject Classification (2000)

Navigation