Skip to main content
Log in

Sequent calculus for classical logic probabilized

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Gentzen’s approach to deductive systems, and Carnap’s and Popper’s treatment of probability in logic were two fruitful ideas that appeared in logic of the mid-twentieth century. By combining these two concepts, the notion of sentence probability, and the deduction relation formalized in the sequent calculus, we introduce the notion of ’probabilized sequent’ \(\Gamma \vdash _a^b\Delta \) with the intended meaning that “the probability of truthfulness of \(\Gamma \vdash \Delta \) belongs to the interval [ab]”. This method makes it possible to define a system of derivations based on ’axioms’ of the form \(\Gamma _i\vdash _{a_i}^{b_i}\Delta _i\), obtained as a result of empirical research, and then infer conclusions of the form \(\Gamma \vdash _a^b\Delta \). We discuss the consistency, define the models, and prove the soundness and completeness for the defined probabilized sequent calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.: The logic of conditionals. Inquiry 8, 166–197 (1965)

    Article  Google Scholar 

  2. Adams, E.: The Logic of Conditionals. Reidel, Dordrecht (1975)

    Book  MATH  Google Scholar 

  3. Boole, G.: The Laws of Thought. Prometheus Books, New York (2003). (First edition 1854)

    MATH  Google Scholar 

  4. Boričić, M.: Hypothetical syllogism rule probabilized. Bull. Symb. Log 20(3), 401–402. Abstract, Logic Colloquium 2012, University of Manchester, 12th–18th July 2012 (2014)

  5. Boričić, M.: Models for the probabilistic sequent calculus. Bull. Symb. Log. 21 (1), 60. Abstract, Logic Colloquium 2014, European Summer Meeting of Association for Symbolic Logic, Vienna University of Technology 14th–19th July (2015)

  6. Boričić, M.: Inference rules for probability logic. Publ. l’Instit. Math. 100(114), 77–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boričić, M.: A Suppes-style sequent calculus for probability logic. J. Log. Comput. 27(4), 1157–1168 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)

    MATH  Google Scholar 

  9. Djordjević, R., Rašković, M., Ognjanović, Z.: Completeness theorem for propositional probabilistic models whose measures have only finite ranges. Arch. Math. Log. 43(4), 557–563 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87, 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (or G. Gentzen, Collected Papers, (ed. M. E. Szabo), North–Holland, Amsterdam, 1969) (1934–35)

  13. Hailperin, T.: Best possible inequalities for the probability logical function of events. Am. Math. Mon. 72, 343–359 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hailperin, T.: Probability logic. Notre Dame J. Form. Log. 25, 198–212 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log. 16, 14–21 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ikodinović, N.: Craig interpolation theorem for classical propositional logic with some probability operators. Publ. l’Instit. Math. 69(83), 27–33 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Keynes, J.M.: A Treatise on Probability. Cambridge University Press, Cambridge (2013). (First edition 1921)

    MATH  Google Scholar 

  18. Leblanc, H., van Fraassen, B.C.: On Carnap and Popper probability functions. J. Symb. Log. 44, 369–373 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leblanc, H.: Popper’s, axiomatization of absolute probability. Pac. Philos. Q. 69(1982), 133–145 (1955)

    Google Scholar 

  20. Leblanc, H.: Probability functions and their assumption sets—the singulary case. J. Philos. Log. 12, 382–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis, D.: Probabilities of conditionals and conditional probabilities. Philos. Rev. 85, 297–315 (1976)

    Article  Google Scholar 

  22. Lewis, D.: Probabilities of conditionals and conditional probabilities II. Philos. Rev. 95, 581–589 (1986)

    Article  Google Scholar 

  23. Marković, Z., Ognjanović, Z., Rašković, M.: A probabilistic extension of intuitionistic logic. Math. Log. Q. 49(4), 415–424 (2003a)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marković, Z., Ognjanović, Z., Rašković, M.: An intuitionistic logic with probabilistic operators. Publ. l’Instit. Math. 73(87), 31–38 (2003b)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nilsson, N.J.: Probabilistic logic revisited. Artif. Intell. 59, 39–42 (1993)

    Article  MathSciNet  Google Scholar 

  27. Ognjanović, Z., Rašković, M.: A logic with higher order probabilities. Publ. l’Instit. Math. 60(74), 1–4 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. In: Z. Ognjanović (ed.) Logic in Computer Science. Zbornik radova 12(20), Mathematical Institute SANU, Belgrade, pp. 35–111 (2009)

  29. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  30. Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell, Stockholm (1965)

    MATH  Google Scholar 

  31. Popper, K. R.: Two autonomous axiom systems for the calculus of probabilities. Br. J. Philos. Sci. 6, 51–57, 176, 351 (1955)

  32. Rašković, M.: Classical logic with some probability operators. Publ. l’Instit. Math. 53(67), 1–3 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Suppes, P.: Probabilistic inference and the concept of total evidence. In: Hintikka, J., Suppes, P. (eds.) Aspects of Inductive Inference, pp. 49–55. North-Holland, Amsterdam (1966)

    Chapter  Google Scholar 

  34. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  35. Szabo, M.E.: Algebra of Proofs. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  36. Venn, J.: The Logic of Chance. Chelsea Publishing Company, New York (1962). (First edition 1866.)

    MATH  Google Scholar 

  37. Venn, J.: The Principles of Inductive Logic. Chelsea Publishing Company, New York (1973). (First edition 1889.)

    MATH  Google Scholar 

  38. Wagner, C.G.: Modus tollens probabilized. Br. J. Philos. Sci. 54(4), 747–753 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Boričić.

Additional information

The results contained in this paper were partially presented at the European Summer Meetings of Association for Symbolic Logic, Logic Colloquium 2012, held in Manchester on July 12–18, 2012, and Logic Colloquium 2014, held in Vienna on July 14–19, 2014. This research was supported in part by the Ministry of Education, Science and Technology of Serbia, Grant number 174026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boričić, M. Sequent calculus for classical logic probabilized. Arch. Math. Logic 58, 119–136 (2019). https://doi.org/10.1007/s00153-018-0626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0626-3

Keywords

Mathematics Subject Classification

Navigation