Skip to main content

Advertisement

Log in

Supervised learning of multivariate skew normal mixture models with missing information

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We establish computationally flexible tools for the analysis of multivariate skew normal mixtures when missing values occur in data. To facilitate the computation and simplify the theoretical derivation, two auxiliary permutation matrices are incorporated into the model for the determination of observed and missing components of each observation and are manifestly effective in reducing the computational complexity. We present an analytically feasible EM algorithm for the supervised learning of parameters as well as missing observations. The proposed mixture analyzer, including the most commonly used Gaussian mixtures as a special case, allows practitioners to handle incomplete multivariate data sets in a wide range of considerations. The methodology is illustrated through a real data set with varying proportions of synthetic missing values generated by MCAR and MAR mechanisms and shown to perform well on classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley and Sons, New York

    MATH  Google Scholar 

  • Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Statist 33: 561–574

    Article  MATH  MathSciNet  Google Scholar 

  • Arellano-Valle RB, Bolfarine H, Lachos VH (2007) Bayesian inference for skew-normal linear mixed models. J Appl Stat 34: 663–682

    Article  MathSciNet  Google Scholar 

  • Arellano-Vallea RB, Genton MG (2005) On fundamental skew distributions. J Multivariate Anal 96: 93–116

    Article  MathSciNet  Google Scholar 

  • Azzalini A (2005) The skew-normal distribution and related multivariate families (with discussion). Scand J Statist 32: 159–200

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R Stat Soc Ser B 61: 579–602

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83: 715–726

    Article  MATH  MathSciNet  Google Scholar 

  • Basford KE, McLachlan GJ (1985) Estimation of allocation rates in a cluster analysis text. J Am Stat Assoc 80: 286–293

    Article  MathSciNet  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformation. J R Stat Soc Ser A 26: 211–252

    MATH  MathSciNet  Google Scholar 

  • Cook RD, Weisberg S (1994) An introduction to regression graphics. Wiley, New York

    Book  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39: 1–38

    MATH  MathSciNet  Google Scholar 

  • Diebolt J, Robert CP (1994) Estimation of finite mixture distributions through Bayesian sampling. J R Stat Soc Ser B 56: 363–375

    MATH  MathSciNet  Google Scholar 

  • Escobar MD, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90: 577–588

    Article  MATH  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, New York

    MATH  Google Scholar 

  • Ghahramani Z, Jordan MI (1994) Supervised learning from incomplete data via an EM approach. In: Cowan JD, Tesarro G, Alspector J (eds) Advances in neural information processing systerms, vol 6. Morgan Kaufmann Publishers, San Francisco, pp 120–127

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109

    Article  MATH  Google Scholar 

  • Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Lin TI (2009a) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivariate Anal 100: 257–265

    Article  MATH  MathSciNet  Google Scholar 

  • Lin TI (2009b) Robust mixture modeling using multivariate skew t distributions. Stat Comput. doi:10.1007/s11222-009-9128-9 (in press)

  • Lin TI, Lee JC, Ni HF (2004) Bayesian analysis of mixture modelling using the multivariate t distribution. Stat Comput 14: 119–130

    Article  MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Ho HJ (2006) On fast supervised learning for normal mixture models with missing information. Pattern Recogn 39: 1177–1187

    Article  MATH  Google Scholar 

  • Lin TI, Lee JC, Hsieh WJ (2007a) Robust mixture modeling using the skew t distribution. Stat Comput 17: 81–92

    Article  MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Yen SY (2007b) Finite mixture modelling using the skew normal distribution. Statist Sinica 17: 909–927

    MATH  MathSciNet  Google Scholar 

  • Lin TI, Ho HJ, Shen PS (2009) Computationally efficient learning of multivariate t mixture models with missing information. Comp Stat 24: 375–392

    Article  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Liu CH, Rubin DB, Wu Y (1998) Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85: 755–770

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan GJ, Basford KE (1988) Mixture models: inference and application to clustering. Marcel Dekker, New York

    Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiely, New York

    Book  MATH  Google Scholar 

  • Pearson K (1894) Contributions to the theory of mathematical evolution, Phi. Trans Roy Soc London A 185: 71–110

    Article  Google Scholar 

  • Peel D, McLachlan GJ (2000) Robust mixture modeling using the t distribution. Stat Comput 10: 339–348

    Article  Google Scholar 

  • Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier L, Baecher-Allan C, McLachlan GJ, Tamayo P, Hafler DA, De Jager PL, Mesirov JP (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci USA 106: 8519–8524

    Article  Google Scholar 

  • Rubin DB (1976) Inference and missing data. Biometrika 63: 581–592

    Article  MATH  MathSciNet  Google Scholar 

  • Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to bayesian regression models. Canad J Statist 31: 129–150

    Article  MATH  MathSciNet  Google Scholar 

  • Schafer JL (1997) Analysis of incomplete multivariate data. Chapman and Hall, London

    MATH  Google Scholar 

  • Shoham S (2002) Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions. Pattern Recogn 35: 1127–1142

    Article  MATH  Google Scholar 

  • Shoham S, Fellows MR, Normann RA (2003) Robust, automatic spike sorting using mixtures of multivariate t-distributions. J Neurosci Methods 127: 111–122

    Article  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation (with discussion). J Am Stat Assoc 82: 528–550

    Article  MATH  MathSciNet  Google Scholar 

  • Titterington DM, Smith AFM, Markov UE (1985) Statistical analysis of finite mixture distributions. Wiely, New York

    MATH  Google Scholar 

  • Wang HX, Zhang QB, Luo B, Wei S (2004) Robust mixture modelling using multivariate t distribution with missing information. Pattern Recogn Lett 25: 701–710

    Article  Google Scholar 

  • Zio MD, Guarnera U, Luzi O (2007) Imputation through finite Gaussian mixture models. Comp Stat Data Anal 51: 5305–5316

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-I Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TC., Lin, TI. Supervised learning of multivariate skew normal mixture models with missing information. Comput Stat 25, 183–201 (2010). https://doi.org/10.1007/s00180-009-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-009-0169-5

Keywords