Skip to main content
Log in

Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a comprehensive Monte Carlo simulation study on the performance of minimum-distance (MD) and maximum-likelihood (ML) estimators for bivariate parametric copulas. In particular, I consider Cramér-von-Mises-, Kolmogorov-Smirnov- and L 1-variants of the CvM-statistic based on the empirical copula process, Kendall’s dependence function and Rosenblatt’s probability integral transform. The results presented in this paper show that regardless of the parametric form of the copula, the sample size or the location of the parameter, maximum-likelihood yields smaller estimation biases at less computational effort than any of the MD-estimators. The MD-estimators based on copula goodness-of-fit metrics, on the other hand, suffer from large biases especially when used for estimating the parameters of archimedean copulas. Moreover, the results show that the bias and efficiency of the minimum-distance estimators are strongly influenced by the location of the parameter. Conversely, the results for the maximum-likelihood estimator are relatively stable over the parameter interval of the respective parametric copula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ané T, Kharoubi C (2003) Dependence structure and risk measure. J Bus 76(3): 411–438

    Article  Google Scholar 

  • Berg D (2009) Copula goodness-of-fit testing: an overview and power comparison. Eur J Fin 15(7): 675–701

    Article  Google Scholar 

  • Biau G, Wegkamp M (2005) Minimum distance estimation of copula densities. Stat Probab Lett 73: 105–114

    Article  MATH  MathSciNet  Google Scholar 

  • Breymann W, Dias A, Embrechts P (2003) Dependence structures for multivariate high-frequency data in finance. Quant Fin 3: 1–14

    Article  MathSciNet  Google Scholar 

  • Chen X, Fan Y (2006) Estimation of copula-based semiparametric time series models. J Econ 130: 307–335

    MathSciNet  Google Scholar 

  • Chen S, Poon S (2007) Modelling international stock market contagion using copula and risk appetite. Working paper

  • Deheuvels P (1978) Caractérisation complète des Lois Extrèmes Multivariées et de la Convergence des Types Extrèmes. Pub l’Institut Stat l’Université Paris 23: 1–36

    MATH  Google Scholar 

  • Deheuvels P (1981) A nonparametric test for independence. Pub l’Institut Stat l’Université Paris

  • Demarta S, McNeil A (2005) The t-copula and related copulas. Int Stat Rev 73(1): 111–129

    Article  MATH  Google Scholar 

  • Durrleman V, Nikeghbali A, Roncalli T (2000) Which copula is the right one? Groupe Rech Oper Crédit Lyonnais: Working paper

  • Embrechts P, McNeil A, Straumann D (2002) Correlation and dependency in risk management: properties and pitfalls. Risk Manag: Value Risk Beyond, Dempster M, Univ Press Cambridge, Cambridge, pp 176–223

  • Fermanian J (2005) Goodness-of-fit tests for copulas. J Multivar Anal 95: 119–152

    Article  MATH  MathSciNet  Google Scholar 

  • Fermanian J, Radulovic D, Wegkamp M (2004) Weak convergence of empirical copula processes. Bernoulli 10: 847–860

    Article  MATH  MathSciNet  Google Scholar 

  • Genest C, Mackay RJ (1986) Copules arquimédiennes et familles des lois bidimensionelles dont les marges sont données. Can J Stat 14: 145–159

    Article  MATH  MathSciNet  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference proceduresfor bivariate Archimedean copulas. J Am Stat Assoc 88: 1034–1043

    Article  MATH  MathSciNet  Google Scholar 

  • Genest C, Ghoudi K, Rivest L (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82: 543–552

    Article  MATH  MathSciNet  Google Scholar 

  • Genest C, Quessy JF, Rémillard B (2006) Goodness-of-fit procedures for copula models based on the integral probability transformation. Scand J Stat 33: 337–366

    Article  MATH  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur Math Econ 44: 199–213

    Article  MATH  Google Scholar 

  • Ghoudi C, Rémillard B (2004) Empirical processes based on pseudo-observations. II. The multivariate case. Asymptot Methods Stoch Fields Inst Commun Am Math Soc Provid 44: 381–406

    Google Scholar 

  • Hoeffding W (1940) Scale invariant correlation theory. Schr Math Inst Univ Berlin 5: 181–233

    Google Scholar 

  • Huard D, Évin G, Favre AC (2006) Bayesian copula selection. Comp Stat Data Anal 51(2): 809–822

    Article  MATH  Google Scholar 

  • Hutchinson T, Lai C (1990) Continuous multivariate distributions. emphasising applications. Adelaide

  • Joe H (1997) Multivariate models and dependence concepts. London

  • Junker M, May A (2005) Measurement of aggregate risk with copulas. Econ J 8: 428–454

    MATH  MathSciNet  Google Scholar 

  • Kim G, Silvapulle M, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comp Stat Data Anal 51: 2836–2850

    Article  MATH  MathSciNet  Google Scholar 

  • Kole E, Koedijk K, Verbeek M (2007) Selecting copulas for risk management. J Bank Fin 31(8): 2405–2423

    Article  Google Scholar 

  • Li D (2000) On default correlation: a copula approach. J Fixed Income 9: 43–54

    Article  Google Scholar 

  • Malevergne Y, Sornette D (2003) Testing the Gaussian copula hypothesis for financial assets dependence. Quant Fin 3: 231–250

    Article  MathSciNet  Google Scholar 

  • McNeil A, Frey R, Embrechts P (2005) Quantitative risk management. Princeton

  • Mendes B, De Melo B, Nelsen R (2007) Robust fits for copula models. Comm Stat Sim Comp 36(5): 997–1017

    Article  MATH  MathSciNet  Google Scholar 

  • Nelsen R (2006) An introduction to copulas, 2nd edn. New York

  • Nikoloulopoulos A, Karlis D (2008) Copla model evaluation based on parametric bootstrap. Comp Stat Data Anal 52: 3342–3353

    Article  MATH  MathSciNet  Google Scholar 

  • Resnick SI (1987) Extreme values, regular variation, and point processes. Berlin

  • Rodriguez J (2007) Measuring financial contagion: a copula approach. J Empir Fin 41: 401–423

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23: 470–472

    Article  MATH  MathSciNet  Google Scholar 

  • Savu C, Trede M (2008) Goodness-of-fit tests for parametric families of archimedean copulas. Quant Fin 8: 109–116

    Article  MATH  MathSciNet  Google Scholar 

  • Schmid F, Trede M (1996) An L 1-variant of the Cramer-von-Mises test. Stat Prob Lett 26: 91–96

    Article  MATH  MathSciNet  Google Scholar 

  • Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math 11: 195–210

    Article  MATH  MathSciNet  Google Scholar 

  • Sklar A (1959) Fonctions de repartition à n dimensions et leurs marges. Publ Inst Univ Paris 8: 229–231

    MathSciNet  Google Scholar 

  • Tsukahara H (2005) Semiparametric estimation in copula models. Can J Stat 33(3): 357–375

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Weiß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiß, G. Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study. Comput Stat 26, 31–54 (2011). https://doi.org/10.1007/s00180-010-0203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-010-0203-7

Keywords

Navigation