Skip to main content
Log in

Prediction interval for disease mapping using hierarchical likelihood

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In disease mapping, the Bayesian approach is widely used for forming the prediction interval of relative risks. In this paper we propose a hierarchical-likelihood interval for disease mapping, which accounts for the inflation of standard error estimates caused by uncertainty in the estimation of the fixed parameters. Comparison is made with the Bayesian prediction intervals derived from penalized quasi-likelihood and fully Bayesian methods. Through simulation studies, we show that prediction intervals for random effects using hierarchical likelihood maintains the required level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth LM, Dean CB (2006) Approximate inference for disease mapping. Comput Stat Data Anal 50: 2552–2570

    Article  MATH  MathSciNet  Google Scholar 

  • Besag J, Higdon D (1999) Bayesian analysis of agricultural field experiments (with discussion). J R Stat Soc Series B 61: 691–746

    Article  MATH  MathSciNet  Google Scholar 

  • Booth JG, Hobert JP (1998) Standard errors of prediction in generalized linear mixed models. J Am Stat Assoc 93: 262–272

    Article  MATH  MathSciNet  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88: 9–25

    Article  MATH  Google Scholar 

  • Browne WJ (1998) Applying MCMC methods to multi-level models. Unpublished Ph.D. Dissertation, University of Bath

  • Browne WJ, Draper D (2006) A comparison of Bayesian and likelihood methods for fitting multilevel models (with discussion). Bayesian Anal 1: 473–550

    Article  MathSciNet  Google Scholar 

  • Carlin BP, Gelfand AE (1991) Approaches for empirical Bayesian confidence intervals. J Am Stat Assoc 84: 717–726

    Google Scholar 

  • Clayton D, Kaldor J (1987) Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43: 671–681

    Article  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc Series B 49: 1–18

    MATH  MathSciNet  Google Scholar 

  • Datta GS, Rao JNK, Smith DD (2005) On measuring the variability of small area estimators under a basic area level models. Biometrika 92: 183–196

    Article  MATH  MathSciNet  Google Scholar 

  • Dean CB, MacNab YC (2001) Modeling of rates over a hierarchical health administrative structure. Can J Stat 29: 405–419

    Article  MATH  MathSciNet  Google Scholar 

  • Eberly LE, Carlin BP (2000) Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Stat Med 19: 2279–2294

    Article  Google Scholar 

  • Ghosh M, Rao JNK (1994) Small area estimation: an appraisal. Stat Sci 9: 55–76

    Article  MATH  MathSciNet  Google Scholar 

  • Ha I, Lee Y, MacKenzie G (2007) Model selection for multi-component frailty models. Stat Med 26: 4790–4807

    Article  MathSciNet  Google Scholar 

  • Kass RE, Steffey D (1989) Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J Am Stat Assoc 84: 717–726

    Article  MathSciNet  Google Scholar 

  • Lee Y, Ha I (2010) Orthodox BLUP versus h-likelihood methods for inferences about random effects in Tweedie mixed models. Stat Comput 20: 295–303

    Article  Google Scholar 

  • Lee Y, Nelder JA (1996) Hierarchical generalized linear models (with discussion). J R Stat Soc Series B 58: 619–678

    MATH  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA (2001) Hierarchical generalised linear models : a synthesis of generalised linear models, random effect models and structured dispersion. Biometrika 88: 987–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA (2006) Fitting via alternative random effect models. Stat Comput 16: 69–75

    Article  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA, Noh M (2007) HL: problems and solutions. Stat Comput 17: 49–55

    Article  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA, Pawitan Y (2006) Generalized linear models with random effects: unified approach via h-likelihood. Chapman and Hall, New York

    Book  Google Scholar 

  • Lee Y, Lee W, Piepho H (2010) Inferences for random-effect models with singular precision matrix. Manuscript submitted for publication

  • Leroux BG (2000) Modelling spatial disease rates using maximum likelihood. Stat Med 18: 2321–2332

    Article  Google Scholar 

  • Leroux BG, Lin X, Breslow N (1999) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran ME, Berry D (eds) Statistical models in epidemiology, the environment and clinical trials. Springer, New York, pp 135–178

    Google Scholar 

  • Lin X, Breslow NE (1996) Bias correction in generalized linear mixed models with multiple components of dispersion. J Am Stat Assoc 91: 1007–1016

    Article  MATH  MathSciNet  Google Scholar 

  • MacNab YC, Dean CB (2000) Parametric bootstrap and penalized quasi–likelihood inference in conditional autoregressive models. Stat Med 19: 2421–2435

    Article  Google Scholar 

  • MacNab YC, Dean CB (2002) Spatio-temporal modelling of rates for the construction of disease maps. Stat Med 21: 347–358

    Article  Google Scholar 

  • MacNab YC, Farrell PJ, Gustafson P, Wen S (2004) Estimation in Bayesian disease mapping. Biometrics 60: 865–873

    Article  MathSciNet  Google Scholar 

  • Noh M, Lee Y (2007) REML estimation for binary data in GLMMs. J Multivar Anal 98: 896–915

    Article  MATH  MathSciNet  Google Scholar 

  • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications, vol 104 of Monographs on Statistics and Applied Probability. Chapman & Hall, London

    Book  Google Scholar 

  • Tierney L, Kadane JB (1983) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81: 82–86

    Article  MathSciNet  Google Scholar 

  • Tierney L, Kass RE, Kadane JB (1989) Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J Am Stat Assoc 84: 710–716

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang Z (2007) A complete SAS program to iteratively run WinBUGS for Monte Carlo simulation, 2006; Retrieved April 19, 2007, from. http://www.psychstat.org/us/article.php/62.htm

  • Zeng D, Lin DY (2007) Maximum likelihood estimation in semiparameteric regression models with censored data (with discussion). J R Stat Soc Series B 69: 507–564

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Jang, M. & Lee, W. Prediction interval for disease mapping using hierarchical likelihood. Comput Stat 26, 159–179 (2011). https://doi.org/10.1007/s00180-010-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-010-0215-3

Keywords

Navigation