Skip to main content
Log in

MCMC using Markov bases for computing \(p\)-values in decomposable log-linear models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We derive an explicit form of a Markov basis on the junction tree for a decomposable log-linear model. Then we give a description of a Markov basis characterized by global Markov properties associated with the graph of a decomposable log-linear model and show how to use the Markov basis for generating contingency tables of a Markov chain. The estimates of exact \(p\)-values can be obtained from contingency tables generated from the proposed Markov chain Monte Carlo using the Markov basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blair JRS, Barry P (1993) An introduction to chordal graphs and clique trees. In: Graph theory and sparse matrix computation. IMA vol Math Appl 56. Springer, New York, pp 1–30

  • Dalenius P, Reiss RS (1982) Data-swapping: a technique for disclosure control. J Stat Plan Inference 6:73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis P, Sturmfels B (1998) Algebraic algorithms for sampling from conditional distributions. Ann Stat 26:363–397

    Article  MathSciNet  MATH  Google Scholar 

  • Dobra A (2003) Markov bases for decomposable graphical models. Bernoulli 9:1093–1108

    Article  MathSciNet  MATH  Google Scholar 

  • Geiger D, Meek Ch, Sturmfels B (2006) On the toric algebra of graphical models. Ann Stat 34:1463–1492

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer CJ (1992) Practical Markov Chain Monte Carlo. Stat Sci 7:473–483

    Article  Google Scholar 

  • Goorin AM, Perez-Atayde A, Gebhardt M, Andersen JW, Wilkinson RH, Delorey MJ, Watts H, Link M, Jaffe N, Frei DE III (1987) Weekly high-dose methotrexate and doxorubicin for osteosarcoma: the Dana-Farber Cancer Institute/the Children’s Hospital-study III. J Clin Oncol 5:1178–1184

    Google Scholar 

  • Hájek P, Havránek T, Jiroušek R (1992) Uncertain information processing in expert systems. CRC Press, Boca Raton

    Google Scholar 

  • Hara H, Aoki S, Takemura A (2010) Minimal and minimal invariant Markov bases of decomposable models for contingency tables. Bernoulli 16:208–233

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MATH  Google Scholar 

  • Innes JR, Ulland BM, Valerio MG, Petrucelli L, Fishbein L, Hart ER, Pallotta AJ, Bates RR, Falk HL, Gart JJ, Klein M, Mitchell I, Peters J (1969) Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: a preliminary note. J Natl Cancer Inst 42:1101–1114

    Google Scholar 

  • Jensen FV, Jensen F (1994) Optimal junction trees. In: de Mantaras RL, Poole D (eds) Proceedings of the 10th conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo, pp 360–366

    Google Scholar 

  • Jones GL, Haran M, Caffo BS, Neath R (2006) Fixed width output analysis for Markov chain Monte Carlo. J Am Stat Assoc 101:1537–1547

    Article  MathSciNet  MATH  Google Scholar 

  • Lauritzen SL (1996) Graphical models. Oxford University Press, New York

    Google Scholar 

  • Muller T, Mayhall JT (1971) Analysis of contingency table data on torus mandibularis using a log linear model. Am J Phys Anthropol 34:149–153

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referees whose valuable comments and kind suggestions that led to an improvement of this paper. This research is supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C), No. 20500263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kuroda.

Appendix: Configuration \(A\) of the conditional independence model for a three-way contingency table

Appendix: Configuration \(A\) of the conditional independence model for a three-way contingency table

We consider a \(2 \times 2 \times 3\) table cross-classified by \(X=(X_{1},X_{2},X_{3})\). For the table, we assume the conditional independence that \(X_{1} \perp X_{2} | X_{3}\). When we consider the reverse lexicographic order of the cell indices in \(\{1,2\} \times \{1,2\} \times \{1,2,3\}\), that is, \((1,1,1),(2,1,1),\ldots ,(2,2,3)\), \(A\) for the conditional independence model is given by

$$\begin{aligned} A=\left(\begin{array}{c} E_{3} \otimes \mathbf 1 _{2}^{\top } \otimes E_{1} \\ E_{3} \otimes E_{2} \otimes \mathbf 1 _{1}^{\top } \end{array} \right) =\left(\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1&0&1&0&&0&0&0&0&&0&0&0&0 \\ 0&1&0&1&&0&0&0&0&&0&0&0&0 \\ 0&0&0&0&&1&0&1&0&&0&0&0&0 \\ 0&0&0&0&&0&1&0&1&&0&0&0&0 \\ 0&0&0&0&&0&0&0&0&&1&0&1&0 \\ 0&0&0&0&&0&0&0&0&&0&1&0&1 \\ 1&1&0&0&&0&0&0&0&&0&0&0&0 \\ 0&0&1&1&&0&0&0&0&&0&0&0&0 \\ 0&0&0&0&&1&1&0&0&&0&0&0&0 \\ 0&0&0&0&&0&0&1&1&&0&0&0&0 \\ 0&0&0&0&&0&0&0&0&&1&1&0&0 \\ 0&0&0&0&&0&0&0&0&&0&0&1&1 \\ \end{array} \right). \end{aligned}$$

By permuting rows of A, we have the block diagonal matrix

$$\begin{aligned} A^{\prime } =\left(\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1&0&1&0&&0&0&0&0&&0&0&0&0 \\ 0&1&0&1&&0&0&0&0&&0&0&0&0 \\ 1&1&0&0&&0&0&0&0&&0&0&0&0 \\ 0&0&1&1&&0&0&0&0&&0&0&0&0 \\ \hline 0&0&0&0&&1&0&1&0&&0&0&0&0 \\ 0&0&0&0&&0&1&0&1&&0&0&0&0 \\ 0&0&0&0&&1&1&0&0&&0&0&0&0 \\ 0&0&0&0&&0&0&1&1&&0&0&0&0 \\ \hline 0&0&0&0&&0&0&0&0&&1&0&1&0 \\ 0&0&0&0&&0&0&0&0&&0&1&0&1 \\ 0&0&0&0&&0&0&0&0&&1&1&0&0 \\ 0&0&0&0&&0&0&0&0&&0&0&1&1 \\ \end{array} \right) = \left( \begin{array}{ccc} A_{22}&&0\\&A_{22}&\\ 0&&A_{22} \end{array} \right) = \left( \begin{array}{c} A_{1}^{\prime } \\ A_{2}^{\prime } \\ A_{3}^{\prime } \\ \end{array} \right). \end{aligned}$$

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, M., Hashiguchi, H., Nakagawa, S. et al. MCMC using Markov bases for computing \(p\)-values in decomposable log-linear models. Comput Stat 28, 831–850 (2013). https://doi.org/10.1007/s00180-012-0331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0331-3

Keywords

Navigation