Skip to main content
Log in

Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper is concerned with parameter estimation in linear and non-linear Itô type stochastic differential equations using Markov chain Monte Carlo (MCMC) methods. The MCMC methods studied in this paper are the Metropolis–Hastings and Hamiltonian Monte Carlo (HMC) algorithms. In these kind of models, the computation of the energy function gradient needed by HMC and gradient based optimization methods is non-trivial, and here we show how the gradient can be computed with a linear or non-linear Kalman filter-like recursion. We shall also show how in the linear case the differential equations in the gradient recursion equations can be solved using the matrix fraction decomposition. Numerical results for simulated examples are presented and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Originally called hybrid Monte Carlo (see, Neal 2011).

  2. The Matlab codes can be obtained from the corresponding author on request.

References

  • Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia Y (2008) Closed-form expansion for multivariate diffusions. Ann Stat 36(2):906–937

    Article  MATH  Google Scholar 

  • Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18(4):343–373

    Article  MathSciNet  Google Scholar 

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. R Stat Soc Ser B Stat Methodol 72(3):269–342

    Article  MathSciNet  Google Scholar 

  • Berg EVD, Heemink AW, Lin HX, Schoenmakers J (2006) Probability density estimation in stochastic environmental models using reverse representations. Stoch Environ Res Risk Assess 20(1–2):126–139

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J R Stat Soc Ser B Stat Methodol 68(3):333–382

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G (2009) Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. Ann Stat 37(1):223–245

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Pillai NS, Roberts GO, Sanz-Serna JM, Stuart AM (2010) Optimal tuning of the hybrid Monte Carlo algorithm (submitted)

  • Bishop CM (1996) Neural networks for pattern recognition. Oxford University, Oxford

    MATH  Google Scholar 

  • Brandt M, Santa-Clara P (2002) Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. J Financ Econ 63(2):161–210

    Article  Google Scholar 

  • Butcher JC (2003) Numerical methods for ordinary differential equations. Wiley, New York

    Book  MATH  Google Scholar 

  • Cappé O, Moulines E, Rydén T (2005) Inference in Hidden Markov models. Springer, Berlin

    MATH  Google Scholar 

  • Chen L, Qin Z, Liu JS (2001) Exploring hybrid Monte Carlo in Bayesian computation. In: Proceedings of ISBA

  • Doucet A, Godsill SJ, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput 10(3):197–208

    Article  Google Scholar 

  • Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid Monte Carlo. Phys Lett B 195(2):216–222

    Article  Google Scholar 

  • Elerian O (1998) A note on the existence of a closed form conditional transition density for the Milstein scheme. Working paper, Nuffield College, Oxford University

  • Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed non-linear diffusions. Econometrica 69(4):959–993

    Article  MathSciNet  MATH  Google Scholar 

  • Eraker B (2001) MCMC analysis of diffusion models with application to finance. J Bus Econ Stat 19(2):177–191

    Article  MathSciNet  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. CRC/Chapman and Hall, London

    MATH  Google Scholar 

  • Geyer CJ (1992) Practical Markov chain Monte Carlo. Stat Sci 7(4):473–483

    Article  MathSciNet  Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Golightly A, Wilkinson DJ (2006) Bayesian sequential inference for nonlinear multivariate diffusions. Stat Comput 16(4):323–338

    Article  MathSciNet  Google Scholar 

  • Golightly A, Wilkinson DJ (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52(3):1674–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Grewal MS, Andrews AP (2001) Kalman filtering, theory and practice using MATLAB. Wiley-IEEE Press, New York

    Google Scholar 

  • Holder T, Leimkuhler B, Reich S (2001) Explicit variable step-size and time-reversible integration. Appl Numer Math 39(3–4):367–377

    Article  MathSciNet  MATH  Google Scholar 

  • Hurn AS, Lindsay KA (1999) Estimating the parameters of stochastic differential equations. Mathe Comput Simul 48(4–6):373–384

    Article  MathSciNet  MATH  Google Scholar 

  • Hurn AS, Lindsay KA, Martin VL (2003) On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. J Time Ser Anal 24(1):45–63

    Article  MathSciNet  MATH  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, Edinburgh

    MATH  Google Scholar 

  • Jeisman J (2005) Estimation of the Parameters of stochastic differential equations. Doctoral dissertation, Queensland University of Technology

  • Jensen B, Poulsen R (2002) Transition densities of diffusion processes: numerical comparison of approximation techniques. J Deriv 9(4):18–32

    Article  Google Scholar 

  • Jones CS (1998) A simple Bayesian method for the analysis of diffusion processes. Working paper, University of Pennsylvania

  • Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  • Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus. Springer, Berlin

    MATH  Google Scholar 

  • Kloeden PE, Platen E (1999) Numerical solution to stochastic differential equations. Springer, Berlin

    Google Scholar 

  • Liang F, Liu C, Carroll RJ (2010) Advanced Markov chain Monte Carlo methods: learning from past samples. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Najfeld I, Havel TF (1995) Derivatives of the matrix exponential and their computation. Adv Appl Math 16(3):321–375

    Article  MathSciNet  MATH  Google Scholar 

  • Neal RM (2011) MCMC using Hamiltonian dynamics. In: Brooks S, Gelman A, Jones GL, Meng XL (eds) Handbook of Markov chain Monte Carlo, chap 5. Chapman& Hall/CRC, London

    Google Scholar 

  • Nielsen JN, Madsen H, Young PC (2000) Parameter estimation in stochastic differential equations: an overview. SIAM J Numer Anal 24:83–94

    Google Scholar 

  • Ninness B, Henriksen S (2010) Bayesian system identification via Markov chain Monte Carlo techniques. Automatica 46(1):40–51

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal B (2003) Stochastic differential equations: an introduction with applications. Springer, Berlin

    Google Scholar 

  • Ornstein LS, Uhlenbeck GE (1930) On the theory of the Brownian motion. Phys Rev 36(5):823–841

    Article  MATH  Google Scholar 

  • Pedersen AR (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22(1):55–71

    MATH  Google Scholar 

  • Särkkä S (2006) Recursive Bayesian inference on stochastic differential equations. Doctoral dissertation, Helsinki University of Technology

  • Särkkä S (2007) On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans Autom Control 52(9):1631–1641

    Article  Google Scholar 

  • Särkkä S, Vehtari A, Lampinen J (2007) Rao-Blackwellized particle filter for multiple target tracking. Inf Fusion J 8(1):2–15

    Article  Google Scholar 

  • Shoji I, Ozaki T (1998) Estimation for nonlinear stochastic differential equations by a local linearization method. Stoch Anal Appl 16(4):733–752

    Article  MathSciNet  MATH  Google Scholar 

  • Singer H (2002) Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood versus extended Kalman filter and Itô-Taylor expansion. J Comput Graph Stat 11(4):972–995

    Google Scholar 

  • Singer H (2004) A survey of estimation methods for stochastic differential equastions. In: Proceedings of 6th international conference on social science methodology, Amsterdam

  • Singer H (2011) Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Adv Stat Anal 95(4):375–413

    Article  MathSciNet  MATH  Google Scholar 

  • Sørensen H (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey. Int Stat Rev 72(3):337–354

    Article  Google Scholar 

  • Stramer O, Bognar M (2011) Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach. Bayesian Anal 6(2):231–258

    Article  MathSciNet  Google Scholar 

  • Stramer O, Bognar M, Schneider P (2010) Bayesian inference for discretely sampled Markov processes with closed-form likelihood expansions. J Financ Econ 8(4):450–480

    Google Scholar 

  • Young P (1980) Parameter estimation for continuous-time models: a survey. Automatica 17(1):23–39

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Aki Vehtari, Antti Solonen, Jouni Hartikainen, and Arno Solin for their contributions. We thank the Department of Mathematics and Physics in Lappeenranta University of Technology, the Department of Biomedical Engineering and Computational Science in Aalto University and the Academy of Finland for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isambi S. Mbalawata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbalawata, I.S., Särkkä, S. & Haario, H. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Comput Stat 28, 1195–1223 (2013). https://doi.org/10.1007/s00180-012-0352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0352-y

Keywords

Navigation